Repository logo
Communities & Collections
All of CIDRZ Publications
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ayaya S"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Authors' Reply: Early Initiation of Antiretroviral Therapy Among Young Children: A Long Way to Go.
    (2015-Oct-01) Koller M; Patel K; Chi BH; Wools-Kaloustian K; Dicko F; Chokephaibulkit K; Chimbetete C; Hazra R; Ayaya S; Leroy V; Trong HK; Egger M; Davies MA; *Institute of Social & Preventive Medicine (ISPM), University of Bern, Switzerland †Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA ‡Centre for Infectious Disease Research in Zambia, Lusaka, Zambia §Department of Medicine, Indiana University School of Medicine, Indianapolis, IN ‖Department of Pediatrics, Gabriel Toure Hospital, Bamako, Mali ¶Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand #Newlands Clinic, Harare, Zimbabwe **Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD ††Department of Pediatrics, College of Health Sciences, Moi University, Kenya ‡‡INSERM, French National Institute for Health and Medical Research, U897, Bordeaux, France §§Children's Hospital 1, Ho Chi Minh City, Vietnam ‖‖School of Public Health and Family Medicine, University of Cape Town Faculty of Health Sciences, South Africa.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
  • Thumbnail Image
    Item
    Immunodeficiency in children starting antiretroviral therapy in low-, middle-, and high-income countries.
    (2015-Jan-01) Koller M; Patel K; Chi BH; Wools-Kaloustian K; Dicko F; Chokephaibulkit K; Chimbetete C; Avila D; Hazra R; Ayaya S; Leroy V; Truong HK; Egger M; Davies MA; *Institute of Social & Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; †Department of Epidemiology, Harvard School of Public Health, Boston, MA; ‡Centre for Infectious Disease Research in Zambia, Lusaka, Zambia; §Department of Medicine, Indiana University School of Medicine, Indianapolis, IN; ‖Department of Pediatrics, Gabriel Toure Hospital, Bamako, Mali; ¶Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; #Newlands Clinic, Harare, Zimbabwe; **Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD; ††Department of Pediatrics, College of Health Sciences, Moi University, Kenya; ‡‡INSERM, French National Institute for Health and Medical Research, U897, Bordeaux, France; §§Children's Hospital 1, Ho Chi Minh City, Vietnam; and ‖‖School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    BACKGROUND: The CD4 cell count or percent (CD4%) at the start of combination antiretroviral therapy (cART) is an important prognostic factor in children starting therapy and an important indicator of program performance. We describe trends and determinants of CD4 measures at cART initiation in children from low-, middle-, and high-income countries. METHODS: We included children aged <16 years from clinics participating in a collaborative study spanning sub-Saharan Africa, Asia, Latin America, and the United States. Missing CD4 values at cART start were estimated through multiple imputation. Severe immunodeficiency was defined according to World Health Organization criteria. Analyses used generalized additive mixed models adjusted for age, country, and calendar year. RESULTS: A total of 34,706 children from 9 low-income, 6 lower middle-income, 4 upper middle-income countries, and 1 high-income country (United States) were included; 20,624 children (59%) had severe immunodeficiency. In low-income countries, the estimated prevalence of children starting cART with severe immunodeficiency declined from 76% in 2004 to 63% in 2010. Corresponding figures for lower middle-income countries were from 77% to 66% and for upper middle-income countries from 75% to 58%. In the United States, the percentage decreased from 42% to 19% during the period 1996 to 2006. In low- and middle-income countries, infants and children aged 12-15 years had the highest prevalence of severe immunodeficiency at cART initiation. CONCLUSIONS: Despite progress in most low- and middle-income countries, many children continue to start cART with severe immunodeficiency. Early diagnosis and treatment of HIV-infected children to prevent morbidity and mortality associated with immunodeficiency must remain a global public health priority.
  • Thumbnail Image
    Item
    Stunting and growth velocity of adolescents with perinatally acquired HIV: differential evolution for males and females. A multiregional analysis from the IeDEA global paediatric collaboration.
    (2019-Nov) Jesson J; Schomaker M; Malasteste K; Wati DK; Kariminia A; Sylla M; Kouadio K; Sawry S; Mubiana-Mbewe M; Ayaya S; Vreeman R; McGowan CC; Yotebieng M; Leroy V; Davies MA; Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, OH, USA.; Department of Child Health and Paediatrics, School of Medicine, College of Health Sciences, Moi University, Eldoret, Kenya.; Sanglah Hospital, Bali, Indonesia.; Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.; Vanderbilt University School of Medicine, Nashville, TN, USA.; The Kirby Institute, UNSW, Sydney, Australia.; University of Cape Town, Centre for Infectious Disease Epidemiology and Research, Cape Town, South Africa.; Hopital Gabriel Touré, Bamako, Mali.; Harriet Shezi Children's Clinic, Chris Hani Baragwanath Academic Hospital, Soweto, South Africa.; Faculty of Health Scences, Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Johannesburg, South Africa.; CIRBA, Abidjan, Côte d'Ivoire.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; Inserm U1219, Bordeaux Population Health Center, Université de Bordeaux, Bordeaux, France.; Medical Informatics and Technology, Institute of Public Health, UMIT - University for Health Sciences, Medical Decision Making and Health Technology Assessment, Hall in Tirol, Austria.; Inserm U1027, Université Paul Sabatier Toulouse 3, Toulouse, France.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    INTRODUCTION: Stunting is a key issue for adolescents with perinatally acquired HIV (APH) that needs to be better understood. As part of the IeDEA multiregional consortium, we described growth evolution during adolescence for APH on antiretroviral therapy (ART). METHODS: We included data from sub-Saharan Africa, the Asia-Pacific, and the Caribbean, Central and South America regions collected between 2003 and 2016. Adolescents on ART, reporting perinatally acquired infection or entering HIV care before 10 years of age, with at least one height measurement between 10 and 16 years of age, and followed in care until at least 14 years of age were included. Characteristics at ART initiation and at 10 years of age were compared by sex. Correlates of growth defined by height-for-age z-scores (HAZ) between ages 10 and 19 years were studied separately for males and females, using linear mixed models. RESULTS: Overall, 8737 APH were included, with 46% from Southern Africa. Median age at ART initiation was 8.1 years (interquartile range (IQR) 6.1 to 9.6), 50% were females, and 41% were stunted (HAZ<-2 SD) at ART initiation. Males and females did not differ by age and stunting at ART initiation, CD4 count over time or retention in care. At 10 years of age, 34% of males were stunted versus 39% of females (p < 0.001). Females had better subsequent growth, resulting in a higher prevalence of stunting for males compared to females by age 15 (48% vs. 25%) and 18 years (31% vs. 15%). In linear mixed models, older age at ART initiation and low CD4 count were associated with poor growth over time (p < 0.001). Those stunted at 10 years of age or at ART initiation had the greatest growth improvement during adolescence. CONCLUSIONS: Prevalence of stunting is high among APH worldwide. Substantial sex-based differences in growth evolution during adolescence were observed in this global cohort, which were not explained by differences in age of access to HIV care, degree of immunosuppression or region. Other factors influencing growth differences in APH, such as differences in pubertal development, should be better documented, to guide further research and inform interventions to optimize growth and health outcomes among APH.
  • No Thumbnail Available
    Item
    The epidemiology of adolescents living with perinatally acquired HIV: A cross-region global cohort analysis.
    (2018-Mar) Slogrove AL; Schomaker M; Davies MA; Williams P; Balkan S; Ben-Farhat J; Calles N; Chokephaibulkit K; Duff C; Eboua TF; Kekitiinwa-Rukyalekere A; Maxwell N; Pinto J; Seage G; Teasdale CA; Wanless S; Warszawski J; Wools-Kaloustian K; Yotebieng M; Timmerman V; Collins IJ; Goodall R; Smith C; Patel K; Paul M; Gibb D; Vreeman R; Abrams EJ; Hazra R; Van Dyke R; Bekker LG; Mofenson L; Vicari M; Essajee S; Penazzato M; Anabwani G; Q Mohapi E; N Kazembe P; Hlatshwayo M; Lumumba M; Goetghebuer T; Thorne C; Galli L; van Rossum A; Giaquinto C; Marczynska M; Marques L; Prata F; Ene L; Okhonskaia L; Rojo P; Fortuny C; Naver L; Rudin C; Le Coeur S; Volokha A; Rouzier V; Succi R; Sohn A; Kariminia A; Edmonds A; Lelo P; Ayaya S; Ongwen P; Jefferys LF; Phiri S; Mubiana-Mbewe M; Sawry S; Renner L; Sylla M; Abzug MJ; Levin M; Oleske J; Chernoff M; Traite S; Purswani M; Chadwick EG; Judd A; Leroy V; Bronx-Lebanon Hospital Center (Icahn School of Medicine at Mount Sinai), Bronx, New York, United States of America.; National Institute of Child Health and Human Development (NICHD), US National Institutes of Health, Rockville, Maryland, United States of America.; Institute of Child Health, University College London, London, United Kingdom.; UNICEF, New York, New York, United States of America.; Inserm (French Institute of Health and Medical Research), CESP UMR Villejuif, France.; School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil.; University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, United States of America.; ICAP at Columbia University Mailman School of Public Health, New York, New York, United States of America.; Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America.; CHU Gabriel Touré, Bamako, Mali.; Elizabeth Glaser Pediatric AIDS Foundation, Washington, DC, United States of America.; Feinberg School of Medicine, Northwestern University, Evanston, Illinois, United States of America.; University Children's Hospital, Basel, Switzerland.; MRC Clinical Trials Unit at University College London, London, United Kingdom.; Centro Hospitalar do Porto, Porto, Portugal.; Republican Hospital of Infectious Diseases, St Petersburg, Russian Federation.; Rutgers New Jersey Medical School, Newark, New Jersey, United States of America.; Tulane University, New Orleans, Louisiana, United States of America.; Medical University of Warsaw, Hospital of Infectious Diseases in Warsaw, Warsaw, Poland.; Karolinska University Hospital, Stockholm, Sweden.; Yopougon University Hospital, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire.; Baylor International Pediatric AIDS Initiative, Kampala, Uganda.; Epicentre, Médecins Sans Frontières, Paris, France.; Indiana University School of Medicine, Indianapolis, Indiana, United States of America.; Center for Infectious Diseases Epidemiology and Research, University of Cape Town, Cape Town, South Africa.; College of Public Health, Ohio State University, Columbus, Ohio, United States of America.; Department of Health Sciences, University of Florence, Florence, Italy.; Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.; Lighthouse Trust Clinic, Lilongwe, Malawi.; World Health Organization, Geneva, Switzerland.; Inserm (French Institute of Health and Medical Research), UMR 1027 Université Toulouse 3, Toulouse, France.; Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.; Shupyk National Medical Academy of Postgraduate Education, Kiev, Ukraine.; TREAT Asia/amfAR, Bangkok, Thailand.; Baylor International Pediatric AIDS Initiative, Mbeya, Tanzania.; Hospital Doce de Octubre, Madrid, Spain.; Hospital de Santa Maria/CHLN, Lisbon, Portugal.; Baylor International Pediatric AIDS Initiative, Lilongwe, Malawi.; Baylor International Pediatric AIDS Initiative, Texas Children's Hospital-USA, Houston, Texas, United States of America.; Baylor International Pediatric AIDS Initiative, Mbabane, Swaziland.; Universidade Federal de São Paulo, São Paulo, Brazil.; Pediatric Hospital Kalembe Lembe, Lingwala, Kinshasa, Democratic Republic of Congo.; Family AIDS Care and Education Services, Kenya Medical Research Institute, Kisumu, Kenya.; Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya.; International AIDS Society, Geneva, Switzerland.; Baylor International Pediatric AIDS Initiative, Maseru, Lesotho.; PENTA Foundation, Padova, Italy.; Center for Infectious Disease Research in Zambia, Lusaka, Zambia.; Hospital St Pierre Cohort, Bruxelles, Belgium.; Erasmus MC University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands.; Institut National d'Etudes Démograhiques (Ined), F-75020 Paris, France.; Institut de Recherche pour le Développement (IRD) 174/PHPT, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.; Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain.; SolidarMed Lesotho, Mozambique and Zimbabwe, Lucerne, Switzerland.; Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.; Harriet Shezi Children's Clinic, Chris Hani Baragwanath Hospital, Johannesburg, South Africa.; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa.; GHESKIO Center, Port-au-Prince, Haiti.; Kirby Institute, UNSW, Sydney, Australia.; Victor Babes Hospital, Bucharest, Romania.; Baylor International Pediatric AIDS Initiative, Gaborone, Botswana.; University of Ghana School of Medicine and Dentistry, Accra, Ghana.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    BACKGROUND: Globally, the population of adolescents living with perinatally acquired HIV (APHs) continues to expand. In this study, we pooled data from observational pediatric HIV cohorts and cohort networks, allowing comparisons of adolescents with perinatally acquired HIV in "real-life" settings across multiple regions. We describe the geographic and temporal characteristics and mortality outcomes of APHs across multiple regions, including South America and the Caribbean, North America, Europe, sub-Saharan Africa, and South and Southeast Asia. METHODS AND FINDINGS: Through the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER), individual retrospective longitudinal data from 12 cohort networks were pooled. All children infected with HIV who entered care before age 10 years, were not known to have horizontally acquired HIV, and were followed up beyond age 10 years were included in this analysis conducted from May 2016 to January 2017. Our primary analysis describes patient and treatment characteristics of APHs at key time points, including first HIV-associated clinic visit, antiretroviral therapy (ART) start, age 10 years, and last visit, and compares these characteristics by geographic region, country income group (CIG), and birth period. Our secondary analysis describes mortality, transfer out, and lost to follow-up (LTFU) as outcomes at age 15 years, using competing risk analysis. Among the 38,187 APHs included, 51% were female, 79% were from sub-Saharan Africa and 65% lived in low-income countries. APHs from 51 countries were included (Europe: 14 countries and 3,054 APHs; North America: 1 country and 1,032 APHs; South America and the Caribbean: 4 countries and 903 APHs; South and Southeast Asia: 7 countries and 2,902 APHs; sub-Saharan Africa, 25 countries and 30,296 APHs). Observation started as early as 1982 in Europe and 1996 in sub-Saharan Africa, and continued until at least 2014 in all regions. The median (interquartile range [IQR]) duration of adolescent follow-up was 3.1 (1.5-5.2) years for the total cohort and 6.4 (3.6-8.0) years in Europe, 3.7 (2.0-5.4) years in North America, 2.5 (1.2-4.4) years in South and Southeast Asia, 5.0 (2.7-7.5) years in South America and the Caribbean, and 2.1 (0.9-3.8) years in sub-Saharan Africa. Median (IQR) age at first visit differed substantially by region, ranging from 0.7 (0.3-2.1) years in North America to 7.1 (5.3-8.6) years in sub-Saharan Africa. The median age at ART start varied from 0.9 (0.4-2.6) years in North America to 7.9 (6.0-9.3) years in sub-Saharan Africa. The cumulative incidence estimates (95% confidence interval [CI]) at age 15 years for mortality, transfers out, and LTFU for all APHs were 2.6% (2.4%-2.8%), 15.6% (15.1%-16.0%), and 11.3% (10.9%-11.8%), respectively. Mortality was lowest in Europe (0.8% [0.5%-1.1%]) and highest in South America and the Caribbean (4.4% [3.1%-6.1%]). However, LTFU was lowest in South America and the Caribbean (4.8% [3.4%-6.7%]) and highest in sub-Saharan Africa (13.2% [12.6%-13.7%]). Study limitations include the high LTFU rate in sub-Saharan Africa, which could have affected the comparison of mortality across regions; inclusion of data only for APHs receiving ART from some countries; and unavailability of data from high-burden countries such as Nigeria. CONCLUSION: To our knowledge, our study represents the largest multiregional epidemiological analysis of APHs. Despite probable under-ascertained mortality, mortality in APHs remains substantially higher in sub-Saharan Africa, South and Southeast Asia, and South America and the Caribbean than in Europe. Collaborations such as CIPHER enable us to monitor current global temporal trends in outcomes over time to inform appropriate policy responses.

CIDRZ copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback