Repository logo
Communities & Collections
All of CIDRZ Publications
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ayaya S"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Authors' Reply: Early Initiation of Antiretroviral Therapy Among Young Children: A Long Way to Go.
    (2015-Oct-01) Koller M; Patel K; Chi BH; Wools-Kaloustian K; Dicko F; Chokephaibulkit K; Chimbetete C; Hazra R; Ayaya S; Leroy V; Trong HK; Egger M; Davies MA; *Institute of Social & Preventive Medicine (ISPM), University of Bern, Switzerland †Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA ‡Centre for Infectious Disease Research in Zambia, Lusaka, Zambia §Department of Medicine, Indiana University School of Medicine, Indianapolis, IN ‖Department of Pediatrics, Gabriel Toure Hospital, Bamako, Mali ¶Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand #Newlands Clinic, Harare, Zimbabwe **Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD ††Department of Pediatrics, College of Health Sciences, Moi University, Kenya ‡‡INSERM, French National Institute for Health and Medical Research, U897, Bordeaux, France §§Children's Hospital 1, Ho Chi Minh City, Vietnam ‖‖School of Public Health and Family Medicine, University of Cape Town Faculty of Health Sciences, South Africa.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
  • Thumbnail Image
    Item
    Immunodeficiency in children starting antiretroviral therapy in low-, middle-, and high-income countries.
    (2015-Jan-01) Koller M; Patel K; Chi BH; Wools-Kaloustian K; Dicko F; Chokephaibulkit K; Chimbetete C; Avila D; Hazra R; Ayaya S; Leroy V; Truong HK; Egger M; Davies MA; *Institute of Social & Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; †Department of Epidemiology, Harvard School of Public Health, Boston, MA; ‡Centre for Infectious Disease Research in Zambia, Lusaka, Zambia; §Department of Medicine, Indiana University School of Medicine, Indianapolis, IN; ‖Department of Pediatrics, Gabriel Toure Hospital, Bamako, Mali; ¶Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; #Newlands Clinic, Harare, Zimbabwe; **Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD; ††Department of Pediatrics, College of Health Sciences, Moi University, Kenya; ‡‡INSERM, French National Institute for Health and Medical Research, U897, Bordeaux, France; §§Children's Hospital 1, Ho Chi Minh City, Vietnam; and ‖‖School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    BACKGROUND: The CD4 cell count or percent (CD4%) at the start of combination antiretroviral therapy (cART) is an important prognostic factor in children starting therapy and an important indicator of program performance. We describe trends and determinants of CD4 measures at cART initiation in children from low-, middle-, and high-income countries. METHODS: We included children aged <16 years from clinics participating in a collaborative study spanning sub-Saharan Africa, Asia, Latin America, and the United States. Missing CD4 values at cART start were estimated through multiple imputation. Severe immunodeficiency was defined according to World Health Organization criteria. Analyses used generalized additive mixed models adjusted for age, country, and calendar year. RESULTS: A total of 34,706 children from 9 low-income, 6 lower middle-income, 4 upper middle-income countries, and 1 high-income country (United States) were included; 20,624 children (59%) had severe immunodeficiency. In low-income countries, the estimated prevalence of children starting cART with severe immunodeficiency declined from 76% in 2004 to 63% in 2010. Corresponding figures for lower middle-income countries were from 77% to 66% and for upper middle-income countries from 75% to 58%. In the United States, the percentage decreased from 42% to 19% during the period 1996 to 2006. In low- and middle-income countries, infants and children aged 12-15 years had the highest prevalence of severe immunodeficiency at cART initiation. CONCLUSIONS: Despite progress in most low- and middle-income countries, many children continue to start cART with severe immunodeficiency. Early diagnosis and treatment of HIV-infected children to prevent morbidity and mortality associated with immunodeficiency must remain a global public health priority.
  • Thumbnail Image
    Item
    Stunting and growth velocity of adolescents with perinatally acquired HIV: differential evolution for males and females. A multiregional analysis from the IeDEA global paediatric collaboration.
    (2019-Nov) Jesson J; Schomaker M; Malasteste K; Wati DK; Kariminia A; Sylla M; Kouadio K; Sawry S; Mubiana-Mbewe M; Ayaya S; Vreeman R; McGowan CC; Yotebieng M; Leroy V; Davies MA; Vanderbilt University School of Medicine, Nashville, TN, USA.; Harriet Shezi Children's Clinic, Chris Hani Baragwanath Academic Hospital, Soweto, South Africa.; Faculty of Health Scences, Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Johannesburg, South Africa.; Sanglah Hospital, Bali, Indonesia.; The Kirby Institute, UNSW, Sydney, Australia.; Hopital Gabriel Touré, Bamako, Mali.; Department of Child Health and Paediatrics, School of Medicine, College of Health Sciences, Moi University, Eldoret, Kenya.; Inserm U1027, Université Paul Sabatier Toulouse 3, Toulouse, France.; University of Cape Town, Centre for Infectious Disease Epidemiology and Research, Cape Town, South Africa.; Inserm U1219, Bordeaux Population Health Center, Université de Bordeaux, Bordeaux, France.; Medical Informatics and Technology, Institute of Public Health, UMIT - University for Health Sciences, Medical Decision Making and Health Technology Assessment, Hall in Tirol, Austria.; Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.; Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, OH, USA.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; CIRBA, Abidjan, Côte d'Ivoire.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    INTRODUCTION: Stunting is a key issue for adolescents with perinatally acquired HIV (APH) that needs to be better understood. As part of the IeDEA multiregional consortium, we described growth evolution during adolescence for APH on antiretroviral therapy (ART). METHODS: We included data from sub-Saharan Africa, the Asia-Pacific, and the Caribbean, Central and South America regions collected between 2003 and 2016. Adolescents on ART, reporting perinatally acquired infection or entering HIV care before 10 years of age, with at least one height measurement between 10 and 16 years of age, and followed in care until at least 14 years of age were included. Characteristics at ART initiation and at 10 years of age were compared by sex. Correlates of growth defined by height-for-age z-scores (HAZ) between ages 10 and 19 years were studied separately for males and females, using linear mixed models. RESULTS: Overall, 8737 APH were included, with 46% from Southern Africa. Median age at ART initiation was 8.1 years (interquartile range (IQR) 6.1 to 9.6), 50% were females, and 41% were stunted (HAZ<-2 SD) at ART initiation. Males and females did not differ by age and stunting at ART initiation, CD4 count over time or retention in care. At 10 years of age, 34% of males were stunted versus 39% of females (p < 0.001). Females had better subsequent growth, resulting in a higher prevalence of stunting for males compared to females by age 15 (48% vs. 25%) and 18 years (31% vs. 15%). In linear mixed models, older age at ART initiation and low CD4 count were associated with poor growth over time (p < 0.001). Those stunted at 10 years of age or at ART initiation had the greatest growth improvement during adolescence. CONCLUSIONS: Prevalence of stunting is high among APH worldwide. Substantial sex-based differences in growth evolution during adolescence were observed in this global cohort, which were not explained by differences in age of access to HIV care, degree of immunosuppression or region. Other factors influencing growth differences in APH, such as differences in pubertal development, should be better documented, to guide further research and inform interventions to optimize growth and health outcomes among APH.
  • No Thumbnail Available
    Item
    The epidemiology of adolescents living with perinatally acquired HIV: A cross-region global cohort analysis.
    (2018-Mar) Slogrove AL; Schomaker M; Davies MA; Williams P; Balkan S; Ben-Farhat J; Calles N; Chokephaibulkit K; Duff C; Eboua TF; Kekitiinwa-Rukyalekere A; Maxwell N; Pinto J; Seage G; Teasdale CA; Wanless S; Warszawski J; Wools-Kaloustian K; Yotebieng M; Timmerman V; Collins IJ; Goodall R; Smith C; Patel K; Paul M; Gibb D; Vreeman R; Abrams EJ; Hazra R; Van Dyke R; Bekker LG; Mofenson L; Vicari M; Essajee S; Penazzato M; Anabwani G; Q Mohapi E; N Kazembe P; Hlatshwayo M; Lumumba M; Goetghebuer T; Thorne C; Galli L; van Rossum A; Giaquinto C; Marczynska M; Marques L; Prata F; Ene L; Okhonskaia L; Rojo P; Fortuny C; Naver L; Rudin C; Le Coeur S; Volokha A; Rouzier V; Succi R; Sohn A; Kariminia A; Edmonds A; Lelo P; Ayaya S; Ongwen P; Jefferys LF; Phiri S; Mubiana-Mbewe M; Sawry S; Renner L; Sylla M; Abzug MJ; Levin M; Oleske J; Chernoff M; Traite S; Purswani M; Chadwick EG; Judd A; Leroy V; Baylor International Pediatric AIDS Initiative, Mbabane, Swaziland.; Medical University of Warsaw, Hospital of Infectious Diseases in Warsaw, Warsaw, Poland.; Institut National d'Etudes Démograhiques (Ined), F-75020 Paris, France.; TREAT Asia/amfAR, Bangkok, Thailand.; Baylor International Pediatric AIDS Initiative, Lilongwe, Malawi.; CHU Gabriel Touré, Bamako, Mali.; Bronx-Lebanon Hospital Center (Icahn School of Medicine at Mount Sinai), Bronx, New York, United States of America.; Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America.; Baylor International Pediatric AIDS Initiative, Maseru, Lesotho.; Harriet Shezi Children's Clinic, Chris Hani Baragwanath Hospital, Johannesburg, South Africa.; Baylor International Pediatric AIDS Initiative, Texas Children's Hospital-USA, Houston, Texas, United States of America.; Feinberg School of Medicine, Northwestern University, Evanston, Illinois, United States of America.; SolidarMed Lesotho, Mozambique and Zimbabwe, Lucerne, Switzerland.; Hospital Doce de Octubre, Madrid, Spain.; Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.; MRC Clinical Trials Unit at University College London, London, United Kingdom.; Inserm (French Institute of Health and Medical Research), UMR 1027 Université Toulouse 3, Toulouse, France.; Yopougon University Hospital, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire.; Indiana University School of Medicine, Indianapolis, Indiana, United States of America.; Baylor International Pediatric AIDS Initiative, Gaborone, Botswana.; Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.; International AIDS Society, Geneva, Switzerland.; Epicentre, Médecins Sans Frontières, Paris, France.; Universidade Federal de São Paulo, São Paulo, Brazil.; Centro Hospitalar do Porto, Porto, Portugal.; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa.; Pediatric Hospital Kalembe Lembe, Lingwala, Kinshasa, Democratic Republic of Congo.; ICAP at Columbia University Mailman School of Public Health, New York, New York, United States of America.; Karolinska University Hospital, Stockholm, Sweden.; Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.; Hospital St Pierre Cohort, Bruxelles, Belgium.; Center for Infectious Disease Research in Zambia, Lusaka, Zambia.; Institute of Child Health, University College London, London, United Kingdom.; Department of Health Sciences, University of Florence, Florence, Italy.; Victor Babes Hospital, Bucharest, Romania.; University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, United States of America.; Kirby Institute, UNSW, Sydney, Australia.; UNICEF, New York, New York, United States of America.; Institut de Recherche pour le Développement (IRD) 174/PHPT, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.; Rutgers New Jersey Medical School, Newark, New Jersey, United States of America.; Lighthouse Trust Clinic, Lilongwe, Malawi.; World Health Organization, Geneva, Switzerland.; College of Public Health, Ohio State University, Columbus, Ohio, United States of America.; Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain.; Center for Infectious Diseases Epidemiology and Research, University of Cape Town, Cape Town, South Africa.; University Children's Hospital, Basel, Switzerland.; Family AIDS Care and Education Services, Kenya Medical Research Institute, Kisumu, Kenya.; Inserm (French Institute of Health and Medical Research), CESP UMR Villejuif, France.; Tulane University, New Orleans, Louisiana, United States of America.; National Institute of Child Health and Human Development (NICHD), US National Institutes of Health, Rockville, Maryland, United States of America.; Elizabeth Glaser Pediatric AIDS Foundation, Washington, DC, United States of America.; GHESKIO Center, Port-au-Prince, Haiti.; Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya.; School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil.; Republican Hospital of Infectious Diseases, St Petersburg, Russian Federation.; Baylor International Pediatric AIDS Initiative, Mbeya, Tanzania.; University of Ghana School of Medicine and Dentistry, Accra, Ghana.; Erasmus MC University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands.; Hospital de Santa Maria/CHLN, Lisbon, Portugal.; Shupyk National Medical Academy of Postgraduate Education, Kiev, Ukraine.; Baylor International Pediatric AIDS Initiative, Kampala, Uganda.; PENTA Foundation, Padova, Italy.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    BACKGROUND: Globally, the population of adolescents living with perinatally acquired HIV (APHs) continues to expand. In this study, we pooled data from observational pediatric HIV cohorts and cohort networks, allowing comparisons of adolescents with perinatally acquired HIV in "real-life" settings across multiple regions. We describe the geographic and temporal characteristics and mortality outcomes of APHs across multiple regions, including South America and the Caribbean, North America, Europe, sub-Saharan Africa, and South and Southeast Asia. METHODS AND FINDINGS: Through the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER), individual retrospective longitudinal data from 12 cohort networks were pooled. All children infected with HIV who entered care before age 10 years, were not known to have horizontally acquired HIV, and were followed up beyond age 10 years were included in this analysis conducted from May 2016 to January 2017. Our primary analysis describes patient and treatment characteristics of APHs at key time points, including first HIV-associated clinic visit, antiretroviral therapy (ART) start, age 10 years, and last visit, and compares these characteristics by geographic region, country income group (CIG), and birth period. Our secondary analysis describes mortality, transfer out, and lost to follow-up (LTFU) as outcomes at age 15 years, using competing risk analysis. Among the 38,187 APHs included, 51% were female, 79% were from sub-Saharan Africa and 65% lived in low-income countries. APHs from 51 countries were included (Europe: 14 countries and 3,054 APHs; North America: 1 country and 1,032 APHs; South America and the Caribbean: 4 countries and 903 APHs; South and Southeast Asia: 7 countries and 2,902 APHs; sub-Saharan Africa, 25 countries and 30,296 APHs). Observation started as early as 1982 in Europe and 1996 in sub-Saharan Africa, and continued until at least 2014 in all regions. The median (interquartile range [IQR]) duration of adolescent follow-up was 3.1 (1.5-5.2) years for the total cohort and 6.4 (3.6-8.0) years in Europe, 3.7 (2.0-5.4) years in North America, 2.5 (1.2-4.4) years in South and Southeast Asia, 5.0 (2.7-7.5) years in South America and the Caribbean, and 2.1 (0.9-3.8) years in sub-Saharan Africa. Median (IQR) age at first visit differed substantially by region, ranging from 0.7 (0.3-2.1) years in North America to 7.1 (5.3-8.6) years in sub-Saharan Africa. The median age at ART start varied from 0.9 (0.4-2.6) years in North America to 7.9 (6.0-9.3) years in sub-Saharan Africa. The cumulative incidence estimates (95% confidence interval [CI]) at age 15 years for mortality, transfers out, and LTFU for all APHs were 2.6% (2.4%-2.8%), 15.6% (15.1%-16.0%), and 11.3% (10.9%-11.8%), respectively. Mortality was lowest in Europe (0.8% [0.5%-1.1%]) and highest in South America and the Caribbean (4.4% [3.1%-6.1%]). However, LTFU was lowest in South America and the Caribbean (4.8% [3.4%-6.7%]) and highest in sub-Saharan Africa (13.2% [12.6%-13.7%]). Study limitations include the high LTFU rate in sub-Saharan Africa, which could have affected the comparison of mortality across regions; inclusion of data only for APHs receiving ART from some countries; and unavailability of data from high-burden countries such as Nigeria. CONCLUSION: To our knowledge, our study represents the largest multiregional epidemiological analysis of APHs. Despite probable under-ascertained mortality, mortality in APHs remains substantially higher in sub-Saharan Africa, South and Southeast Asia, and South America and the Caribbean than in Europe. Collaborations such as CIPHER enable us to monitor current global temporal trends in outcomes over time to inform appropriate policy responses.

CIDRZ copyright © 2025

  • Send Feedback