Browsing by Author "Dicko F"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Access to antiretroviral therapy in HIV-infected children aged 0-19 years in the International Epidemiology Databases to Evaluate AIDS (IeDEA) Global Cohort Consortium, 2004-2015: A prospective cohort study.(2018-May) Desmonde S; Tanser F; Vreeman R; Takassi E; Edmonds A; Lumbiganon P; Pinto J; Malateste K; McGowan C; Kariminia A; Yotebieng M; Dicko F; Yiannoutsos C; Mubiana-Mbewe M; Wools-Kaloustian K; Davies MA; Leroy V; Africa Centre for Health and Population Studies, University of KwaZulu-Natal, Somkhele, South Africa.; Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, United States of America.; Inserm U1027, Toulouse III University, Toulouse, France.; Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.; Inserm U1219, University of Bordeaux, Bordeaux, France.; Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.; CHU Sylvanus Olympio, Lomé, Togo.; Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.; Hopital Gabriel Touré, Bamako, Mali.; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.; School of Medicine, Universide Federal de Minas Gerais, Belo Horizonte, Brazil.; School of Medicine, Indiana University, Indianapolis, Indiana, United States of America.; Bordeaux School of Public Health, University of Bordeaux, Bordeaux, France.; Khon Kaen University, Khon Kaen, Thailand.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; Division of Epidemiology, College of Public Health, Ohio State University, Columbus, Ohio, United States of America.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)INTRODUCTION: Access to antiretroviral therapy (ART) is a global priority. However, the attrition across the continuum of care for HIV-infected children between their HIV diagnosis and ART initiation is not well known. We analyzed the time from enrollment into HIV care to ART initiation in HIV-infected children within the International Epidemiology Databases to Evaluate AIDS (IeDEA) Global Cohort Consortium. METHODS AND FINDINGS: We included 135,479 HIV-1-infected children, aged 0-19 years and ART-naïve at enrollment, between 1 January 2004 and 31 December 2015, in IeDEA cohorts from Central Africa (3 countries; n = 4,948), East Africa (3 countries; n = 22,827), West Africa (7 countries; n = 7,372), Southern Africa (6 countries; n = 93,799), Asia-Pacific (6 countries; n = 4,045), and Latin America (7 countries; n = 2,488). Follow-up in these cohorts is typically every 3-6 months. We described time to ART initiation and missed opportunities (death or loss to follow-up [LTFU]: last clinical visit >6 months) since baseline (the date of HIV diagnosis or, if unavailable, date of enrollment). Cumulative incidence functions (CIFs) for and determinants of ART initiation were computed, with death and LTFU as competing risks. Among the 135,479 children included, 99,404 (73.4%) initiated ART, 1.9% died, 1.4% were transferred out, and 20.4% were lost to follow-up before ART initiation. The 24-month CIF for ART initiation was 68.2% (95% CI: 67.9%-68.4%); it was lower in sub-Saharan Africa-ranging from 49.8% (95% CI: 48.4%-51.2%) in Central Africa to 72.5% (95% CI: 71.5%-73.5%) in West Africa-compared to Latin America (71.0%, 95% CI: 69.1%-72.7%) and the Asia-Pacific (78.3%, 95% CI: 76.9%-79.6%). Adolescents aged 15-19 years and infants <1 year had the lowest cumulative incidence of ART initiation compared to other ages: 62.2% (95% CI: 61.6%-62.8%) and 66.4% (95% CI: 65.7%-67.0%), respectively. Overall, 49.1% were ART-eligible per local guidelines at baseline, of whom 80.6% initiated ART. The following children had lower cumulative incidence of ART initiation: female children (p < 0.01); those aged <1 year, 2-4 years, 5-9 years, and 15-19 years (versus those aged 10-14 years, p < 0.01); those who became eligible during follow-up (versus eligible at enrollment, p < 0.01); and those receiving care in low-income or lower-middle-income countries (p < 0.01). The main limitations of our study include left truncation and survivor bias, caused by deaths of children prior to enrollment, and use of enrollment date as a proxy for missing data on date of HIV diagnosis, which could have led to underestimation of the time between HIV diagnosis and ART initiation. CONCLUSIONS: In this study, 68% of HIV-infected children initiated ART by 24 months. However, there was a substantial risk of LTFU before ART initiation, which may also represent undocumented mortality. In 2015, many obstacles to ART initiation remained, with substantial inequities. More effective and targeted interventions to improve access are needed to reach the target of treating 90% of HIV-infected children with ART.Item Authors' Reply: Early Initiation of Antiretroviral Therapy Among Young Children: A Long Way to Go.(2015-Oct-01) Koller M; Patel K; Chi BH; Wools-Kaloustian K; Dicko F; Chokephaibulkit K; Chimbetete C; Hazra R; Ayaya S; Leroy V; Trong HK; Egger M; Davies MA; *Institute of Social & Preventive Medicine (ISPM), University of Bern, Switzerland †Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA ‡Centre for Infectious Disease Research in Zambia, Lusaka, Zambia §Department of Medicine, Indiana University School of Medicine, Indianapolis, IN ‖Department of Pediatrics, Gabriel Toure Hospital, Bamako, Mali ¶Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand #Newlands Clinic, Harare, Zimbabwe **Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD ††Department of Pediatrics, College of Health Sciences, Moi University, Kenya ‡‡INSERM, French National Institute for Health and Medical Research, U897, Bordeaux, France §§Children's Hospital 1, Ho Chi Minh City, Vietnam ‖‖School of Public Health and Family Medicine, University of Cape Town Faculty of Health Sciences, South Africa.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)Item Immunodeficiency in children starting antiretroviral therapy in low-, middle-, and high-income countries.(2015-Jan-01) Koller M; Patel K; Chi BH; Wools-Kaloustian K; Dicko F; Chokephaibulkit K; Chimbetete C; Avila D; Hazra R; Ayaya S; Leroy V; Truong HK; Egger M; Davies MA; *Institute of Social & Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; †Department of Epidemiology, Harvard School of Public Health, Boston, MA; ‡Centre for Infectious Disease Research in Zambia, Lusaka, Zambia; §Department of Medicine, Indiana University School of Medicine, Indianapolis, IN; ‖Department of Pediatrics, Gabriel Toure Hospital, Bamako, Mali; ¶Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; #Newlands Clinic, Harare, Zimbabwe; **Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD; ††Department of Pediatrics, College of Health Sciences, Moi University, Kenya; ‡‡INSERM, French National Institute for Health and Medical Research, U897, Bordeaux, France; §§Children's Hospital 1, Ho Chi Minh City, Vietnam; and ‖‖School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)BACKGROUND: The CD4 cell count or percent (CD4%) at the start of combination antiretroviral therapy (cART) is an important prognostic factor in children starting therapy and an important indicator of program performance. We describe trends and determinants of CD4 measures at cART initiation in children from low-, middle-, and high-income countries. METHODS: We included children aged <16 years from clinics participating in a collaborative study spanning sub-Saharan Africa, Asia, Latin America, and the United States. Missing CD4 values at cART start were estimated through multiple imputation. Severe immunodeficiency was defined according to World Health Organization criteria. Analyses used generalized additive mixed models adjusted for age, country, and calendar year. RESULTS: A total of 34,706 children from 9 low-income, 6 lower middle-income, 4 upper middle-income countries, and 1 high-income country (United States) were included; 20,624 children (59%) had severe immunodeficiency. In low-income countries, the estimated prevalence of children starting cART with severe immunodeficiency declined from 76% in 2004 to 63% in 2010. Corresponding figures for lower middle-income countries were from 77% to 66% and for upper middle-income countries from 75% to 58%. In the United States, the percentage decreased from 42% to 19% during the period 1996 to 2006. In low- and middle-income countries, infants and children aged 12-15 years had the highest prevalence of severe immunodeficiency at cART initiation. CONCLUSIONS: Despite progress in most low- and middle-income countries, many children continue to start cART with severe immunodeficiency. Early diagnosis and treatment of HIV-infected children to prevent morbidity and mortality associated with immunodeficiency must remain a global public health priority.