Browsing by Author "Euvrard J"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Associations of inter-annual rainfall decreases with subsequent HIV outcomes for persons with HIV on antiretroviral therapy in Southern Africa: a collaborative analysis of cohort studies.(2023-Dec-19) Trickey A; Johnson LF; Fung F; Bonifacio R; Iwuji C; Biraro S; Bosomprah S; Chirimuta L; Euvrard J; Fatti G; Fox MP; Von Groote P; Gumulira J; Howard G; Jennings L; Kiragga A; Muula G; Tanser F; Wagener T; Low A; Vickerman P; Centre for Epidemic Response and Innovation, School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.; Department of Civil Engineering, University of Bristol, Bristol, UK.; Desmond Tutu Health Foundation, Institute of Infectious Diseases and Molecular Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa.; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.; Kheth'Impilo AIDS Free Living, Cape Town, South Africa.; NIHR Health Protection Research Unit in Behavioural Science and Evaluation at University of Bristol, Bristol, UK.; UK Meteorological Office, Exeter, UK.; Newlands Clinic, Harare, Zimbabwe.; Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.; Lighthouse Trust, Mzimba, Malawi.; Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.; Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany.; Department of Civil Engineering and Cabot Institute of the Environment, University of Bristol, Bristol, UK.; Climate and Earth Observation Unit, Research Assessment and Monitoring Division, World Food Programme HQ, Rome, Italy.; Research Division, African Population and Health Research Center, Nairobi, Kenya.; Population Health Sciences, University of Bristol, Bristol, UK. adam.trickey@bristol.ac.uk.; Health Economics and Epidemiology Research Office, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.; Department of Global Health Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK.; Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.; Africa Health Research Institute, KwaZulu-Natal, South Africa.; ICAP at Columbia University, Nakasero, Kampala, Uganda.; School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa.; Department of Biostatistics, School of Public Health, University of Ghana, Legon, Accra, Ghana.; Department of Global Health and Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.; Population Health Sciences, University of Bristol, Bristol, UK.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)BACKGROUND: Periods of droughts can lead to decreased food security, and altered behaviours, potentially affecting outcomes on antiretroviral therapy (ART) among persons with HIV (PWH). We investigated whether decreased rainfall is associated with adverse outcomes among PWH on ART in Southern Africa. METHODS: Data were combined from 11 clinical cohorts of PWH in Lesotho, Malawi, Mozambique, South Africa, Zambia, and Zimbabwe, participating in the International epidemiology Databases to Evaluate AIDS Southern Africa (IeDEA-SA) collaboration. Adult PWH who had started ART prior to 01/06/2016 and were in follow-up in the year prior to 01/06/2016 were included. Two-year rainfall from June 2014 to May 2016 at the location of each HIV centre was summed and ranked against historical 2-year rainfall amounts (1981-2016) to give an empirical relative percentile rainfall estimate. The IeDEA-SA and rainfall data were combined using each HIV centre's latitude/longitude. In individual-level analyses, multivariable Cox or generalized estimating equation regression models (GEEs) assessed associations between decreased rainfall versus historical levels and four separate outcomes (mortality, CD4 counts < 200 cells/mm RESULTS: Among 270,708 PWH across 386 HIV centres (67% female, median age 39 [IQR: 32-46]), lower rainfall than usual was associated with higher mortality (adjusted Hazard Ratio: 1.18 [95%CI: 1.07-1.32] per 10 percentile rainfall rank decrease) and unsuppressed viral loads (adjusted Odds Ratio: 1.05 [1.01-1.09]). Levels of rainfall were not strongly associated with CD4 counts < 200 cell/mm CONCLUSIONS: Decreased rainfall could negatively impact on HIV treatment behaviours and outcomes. Further research is needed to explore the reasons for these effects. Interventions to mitigate the health impact of severe weather events are required.Item Correcting mortality estimates among children and youth on antiretroviral therapy in southern Africa: A comparative analysis between a multi-country tracing study and linkage to a health information exchange.(2024-Aug) Nyakato P; Schomaker M; Boulle A; Euvrard J; Wood R; Eley B; Prozesky H; Christ B; Anderegg N; Ayakaka I; Rafael I; Kunzekwenyika C; Moore CB; van Lettow M; Chimbetete C; Mbewe S; Ballif M; Egger M; Yiannoutsos CT; Cornell M; Davies MA; R.M Fairbanks, School of Public Health, Department of Biostatistics, Indiana University, Indianapolis, Indiana, USA.; Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia.; SolidarMed, Pemba, Mozambique.; Centre for Infectious Disease Epidemiology and Research, School of Public Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.; Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.; Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.; Newlands Clinic, Harare, Zimbabwe.; SolidarMed, Masvingo, Zimbabwe.; Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.; Division of Infectious Diseases, Department of Medicine, University of Stellenbosch and Tygerberg Academic Hospital, Cape Town, South Africa.; Lighthouse Trust Clinic, Lilongwe, Malawi.; SolidarMed, Maseru, Lesotho.; Khayelitsha ART Programme, Cape Town, South Africa.; Western Cape Government: Health and Wellness, Cape Town, South Africa.; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.; Madiro, Toronto, Canada.; Department of Statistics, Ludwig-Maximilians-Universität München, Munich, Germany.; Red Cross War Memorial Children's Hospital and Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.; Gugulethu HIV Programme and Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa.; Dignitas International, Zomba, Malawi.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)OBJECTIVES: The objective of this study is to assess the outcomes of children, adolescents and young adults with HIV reported as lost to follow-up, correct mortality estimates for children, adolescents and young adults with HIV for unascertained outcomes in those loss to follow-up (LTFU) based on tracing and linkage data separately using data from the International epidemiology Databases to Evaluate AIDS in Southern Africa. METHODS: We included data from two different populations of children, adolescents and young adults with HIV; (1) clinical data from children, adolescents and young adults with HIV aged ≤24 years from Lesotho, Malawi, Mozambique, Zambia and Zimbabwe; (2) clinical data from children, adolescents and young adults with HIV aged ≤14 years from the Western Cape (WC) in South Africa. Outcomes of patients lost to follow-up were available from (1) a tracing study and (2) linkage to a health information exchange. For both populations, we compared six methods for correcting mortality estimates for all children, adolescents and young adults with HIV. RESULTS: We found substantial variations of mortality estimates among children, adolescents and young adults with HIV reported as lost to follow-up versus those retained in care. Ascertained mortality was higher among lost and traceable children, adolescents and young adults with HIV and lower among lost and linkable than those retained in care (mortality: 13.4% [traced] vs. 12.6% [retained-other Southern Africa countries]; 3.4% [linked] vs. 9.4% [retained-WC]). A high proportion of lost to follow-up children, adolescents and young adults with HIV had self-transferred (21.0% and 47.0%) in the traced and linked samples, respectively. The uncorrected method of non-informative censoring yielded the lowest mortality estimates among all methods for both tracing (6.0%) and linkage (4.0%) approaches at 2 years from ART start. Among corrected methods using ascertained data, multiple imputation, incorporating ascertained data (MI(asc.)) and inverse probability weighting with logistic weights were most robust for the tracing approach. In contrast, for the linkage approach, MI(asc.) was the most robust. CONCLUSIONS: Our findings emphasise that lost to follow-up is non-ignorable and both tracing and linkage improved outcome ascertainment: tracing identified substantial mortality in those reported as lost to follow-up, whereas linkage did not identify out-of-facility deaths, but showed that a large proportion of those reported as lost to follow-up were self-transfers.Item Extending Visit Intervals for Clinically Stable Patients on Antiretroviral Therapy: Multicohort Analysis of HIV Programs in Southern Africa.(2019-Aug-01) Haas AD; Johnson LF; Grimsrud A; Ford N; Mugglin C; Fox MP; Euvrard J; van Lettow M; Prozesky H; Sikazwe I; Chimbetete C; Hobbins M; Kunzekwenyika C; Egger M; Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.; Department of Internal Medicine, Health Economics and Epidemiology Research Office, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.; Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.; Global Health, Boston University School of Public Health, Boston, MA.; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.; Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia.; Newlands Clinic, Harare, Zimbabwe.; Department of HIV/AIDS World Health Organization, Geneva, Switzerland.; SolidarMed, Masvingo, Zimbabwe.; International AIDS Society, Cape Town, South Africa.; Division of Infectious Diseases, Department of Medicine, Tygerberg Academic Hospital, University of Stellenbosch, Cape Town, South Africa.; Dignitas International, Zomba, Malawi.; SolidarMed, Lucerne, Switzerland.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)BACKGROUND: The World Health Organization recommends differentiated antiretroviral therapy (ART) delivery with longer visit intervals for clinically stable patients. We examined time trends in visit frequency and associations between criteria for clinical stability and visit frequency in ART programs in Southern Africa. METHODS: We included adults on ART from 4 programs with viral-load monitoring, 2 programs with CD4 monitoring, and 4 programs with clinical monitoring of ART. We classified patients as clinically stable based on virological (viral load <1000 copies/mL), immunological (CD4 >200 cells/µL), or clinical (no current tuberculosis) criteria. We used Poisson regression and survival models to examine associations between criteria for clinical stability and the rate of clinic visits. RESULTS: We included 180,837 patients. There were trends toward fewer visits in more recent years and with longer ART duration. In all ART programs, clinically stable patients were seen less frequently than patients receiving failing ART, but the strength of the association varied. Adjusted incidence rate ratios comparing visit rates for stable patients with patients on failing ART were 0.82 (95% confidence interval: 0.73 to 0.90) for patients classified based on the virological criterion, 0.81 (0.69 to 0.93) for patients classified based on the clinical criterion, and 0.90 (0.85 to 0.96) for patients classified based on the immunological criterion for stability. CONCLUSION: Differences in visit rates between stable patients and patients failing ART were variable and modest overall. Larger differences were seen in programs using virological criteria for clinical stability than in programs using immunological criteria. Greater access to routine viral-load monitoring may increase scale-up of differentiated ART delivery.Item The long-term impact of the COVID-19 pandemic on tuberculosis care and infection control measures in anti-retroviral therapy (ART) clinics in low- and middle-income countries: a multiregional site survey in Asia and Africa.(2025-Mar-24) Ballif M; Banholzer N; Perrig L; Avihingsanon A; Nsonde DM; Obatsa S; Muula G; Komena E; Uemura H; Lelo P; Otaalo B; Huwa J; Gouéssé P; Kumarasamy N; Brazier E; Michael D; Rafael I; Ramdé R; Somia IKA; Yotebieng M; Diero L; Euvrard J; Ezechi O; Fenner L; City University of New York, Institute for Implementation Science in Population Health, New York, NY, USA.; Pediatric Hospital of Kalembelembe, Kinshasa, Democratic Republic of the Congo.; Centre for Reproduction and Population Health Studies, Nigerian Institute of Medical Research, Lagos, Nigeria.; HIV-NAT / Thai Red Cross AIDS Research Centre and Center of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.; Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.; Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda.; Centre for Microbiology and Research, Kenya Medical Research Institute, Kisumu, Kenya.; School of Public Health, University of Cape Town, Cape Town, South Africa.; Division of General Internal Medicine, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.; CHU Sourô Sanou, Bobo-Dioulasso, Burkina Faso.; PAC-CI program, Abidjan, Côte d'Ivoire.; Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland lukas.fenner@unibe.ch.; Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland.; CART Clinical Research Site, Voluntary Health Services, Chennai, India.; SolidarMed, Chiure, Mozambique.; Lighthouse Trust, Lilongwe, Malawi.; Kisesa Observation Cohort study, National Institute for Medical Reseach, Mwanza, Tanzania.; Faculty of Medicine, Udayana University, Ngoerah Hospital, Bali, Indonesia.; Centre de Traitement Ambulatoire, Brazzaville, Republic of Congo.; Department of Medicine, Moi University, AMPATH Program / Moi Teaching and Referral Hospital, Eldoret, Kenya.; CePReF, Abidjan, Côte d'Ivoire.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)BACKGROUND: The COVID-19 pandemic challenged healthcare systems, particularly in settings with high infectious disease burden. We examined the postpandemic long-term impacts of COVID-19 on tuberculosis (TB) services at anti-retroviral therapy (ART) clinics in lower-income countries. METHODS: Using standardised online questionnaires, we conducted a cross-sectional site survey among ART clinics providing TB services in Africa and Asia from July to September 2023 (site-level information and number of TB diagnoses and tests). RESULTS: Of 45 participating ART clinics, 32 (71%) were in Africa and 13 (29%) in Asia. During the COVID-19 pandemic (2020-2022), 43 (96%) clinics reported implementing social distancing or separation measures, 39 (87%) personal protections for staff members and 32 (71%) protections for patients. Infection control measures were in place in 45% of the clinics before the pandemic (until 2019), 23% introduced measures during the pandemic and 15% maintained them after the pandemic (after 2022). Service provision was affected during the pandemic in 33 (73%) clinics, including TB services in 22 (49%) clinics. TB service restrictions were addressed by introducing changes in directly observed therapy provision in 8 (18%) clinics, multimonth TB drug dispensing in 23 (51%), telehealth services in 25 (56%) and differentiated service delivery in 19 (42%). These changes were sustained after the pandemic at 4 (9%), 11 (24%), 17 (38%) and 12 (27%) clinics, respectively. Compared with 2018-2019, the number of TB diagnoses decreased sharply in 2020-2021 and improved after the pandemic. CONCLUSIONS: COVID-19 affected TB care services in ART clinics in Africa and Asia. This was paralleled by a reduction in TB diagnoses, which partly resumed after the pandemic. Infection control measures and alternative modes of service delivery were adopted during the pandemic and only partially maintained. Efforts should be made to sustain the lessons learnt during the COVID-19 pandemic, particularly approaches that reduce the risk of transmission of infectious diseases, including TB, in ART clinics.Item Trends in CD4 and viral load testing 2005 to 2018: multi-cohort study of people living with HIV in Southern Africa.(2020-Jul) Zaniewski E; Dao Ostinelli CH; Chammartin F; Maxwell N; Davies MA; Euvrard J; van Dijk J; Bosomprah S; Phiri S; Tanser F; Sipambo N; Muhairwe J; Fatti G; Prozesky H; Wood R; Ford N; Fox MP; Egger M; Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana.; Department of Global Health, Boston University, Boston, MA, USA.; Kheth'Impilo AIDS Free Living, Cape Town, South Africa.; Lighthouse, Lilongwe, Malawi.; Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.; Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.; SolidarMed, Masvingo, Zimbabwe.; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.; SolidarMed, Maseru, Lesotho.; Department of Epidemiology, Boston University, Boston, MA, USA.; Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa.; Gugulethu ART Programme (Desmond Tutu HIV Centre), Cape Town, South Africa.; Lincoln International Institute for Rural Health, University of Lincoln, Lincoln, United Kingdom.; Division of Infectious Diseases, Department of Medicine, Stellenbosch University, Cape Town, South Africa.; Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.; Department of HIV/AIDS and Global Hepatitis Programme, World Health Organization, Geneva, Switzerland.; Africa Health Research Institute, KwaZulu-Natal, South Africa.; Health Economics and Epidemiology Research Office, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.; School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)INTRODUCTION: The World Health Organization (WHO) recommends a CD4 cell count before starting antiretroviral therapy (ART) to detect advanced HIV disease, and routine viral load (VL) testing following ART initiation to detect treatment failure. Donor support for CD4 testing has declined to prioritize access to VL monitoring. We examined trends in CD4 and VL testing among adults (≥15 years of age) starting ART in Southern Africa. METHODS: We analysed data from 14 HIV treatment programmes in Lesotho, Malawi, Mozambique, South Africa, Zambia and Zimbabwe in 2005 to 2018. We examined the frequency of CD4 and VL testing, the percentage of adults with CD4 or VL tests, and among those having a test, the percentage starting ART with advanced HIV disease (CD4 count <200 cells/mm RESULTS: Among 502,456 adults, the percentage with CD4 testing at ART initiation decreased from a high of 78.1% in 2008 to a low of 38.0% in 2017; the probability declined by 14% each year (odds ratio (OR) 0.86; 95% CI 0.86 to 0.86). Frequency of CD4 testing also declined. The percentage starting ART with advanced HIV disease declined from 83.3% in 2005 to 23.5% in 2018; each year the probability declined by 20% (OR 0.80; 95% CI 0.80 to 0.81). VL testing after starting ART varied; 61.0% of adults in South Africa and 10.7% in Malawi were tested, but fewer than 2% were tested in the other four countries. The probability of VL testing after ART start increased only modestly each year (OR 1.06; 95% CI 1.05 to 1.06). The percentage with unsuppressed VL was 8.6%. There was no evidence of a decrease in unsuppressed VL over time (OR 1.00; 95% CI 0.99 to 1.01). CONCLUSIONS: CD4 cell counting declined over time, including testing at the start of ART, despite the fact that many patients still initiated ART with advanced HIV disease. Without CD4 testing and expanded VL testing many patients with advanced HIV disease and treatment failure may go undetected, threatening the effectiveness of ART in sub-Saharan Africa.