Repository logo
Communities & Collections
All of CIDRZ Publications
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Evans D"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Cardiovascular Involvement in Tuberculosis Patients Treated in Southern Africa.
    (2025-Jan) Samim D; Muula G; Banholzer N; Chibomba D; Xulu S; Bolton C; Evans D; Perrig L; De Marchi S; Günther G; Egger M; Pilgrim T; Fenner L; Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.; Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, Republic of South Africa.; Department of Cardiology, Helen Joseph Clinic, Johannesburg, Republic of South Africa.; Department of Pulmonology and Allergology, Inselspital, University Hospital of Bern, Bern, Switzerland.; University Teaching Hospital, Department of Internal Medicine, Lusaka, Zambia.; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.; Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.; Centre for Infectious Disease Research in Zambia (CIDRZ), Lusaka, Zambia.; Health Economics and Epidemiology Research Office, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
    BACKGROUND: Tuberculosis (TB) is the leading cause of death among people with HIV and a major global health challenge. Subclinical cardiovascular manifestations of TB are poorly documented in high TB and HIV burden countries. OBJECTIVES: The purpose of this study was to quantify the prevalence of cardiovascular involvement in TB patients and investigate changes after completion of anti-TB treatment. METHODS: HIV-positive and HIV-negative patients diagnosed with pulmonary TB between October 2022 and November 2023 were enrolled from 2 tertiary care hospitals in Zambia and South Africa. Standardized transthoracic echocardiography (TTE) was conducted at TB diagnosis and after 6 months of anti-TB treatment. Cross-sectional and longitudinal analyses assessed pericardial effusion, thickening, or calcification, with and without signs of pericardial constriction. RESULTS: A total of 286 TB patients (218 [76%] men, 109 [38%] people with HIV, median age 35 years) underwent TTE at TB diagnosis, of whom 105 participants had a second TTE after completion of treatment. At TB diagnosis, 134 (47%) had pericardial effusions, 86 (30%) thickening, 7 (2%) calcifications, 103 (42%) signs of constriction, and 13 (12%) had definite diagnosis of constriction. After TB treatment, pericardial effusions (47% vs 16%, CONCLUSIONS: Cardiac involvement is frequent in newly diagnosed TB patients. Early pericardial changes may be reversed with anti-TB treatment. Echocardiographic screening facilitates early detection and timely management of cardiovascular involvement in TB patients.
  • Thumbnail Image
    Item
    Field evaluation of nanopore targeted next-generation sequencing to predict drug-resistant tuberculosis from native sputum in South Africa and Zambia.
    (2025-Mar-12) Schwab TC; Joseph L; Moono A; Göller PC; Motsei M; Muula G; Evans D; Neuenschwander S; Günther G; Bolton C; Keller PM; Ramette A; Egger M; Omar SV; Fenner L; Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.; Population Health Sciences, University of Bristol, Bristol, United Kingdom.; Center for Infectious Disease Research in Zambia, Lusaka, Zambia.; Department of Pulmonology and Allergology, Inselspital Universitatsspital Bern, Bern, Switzerland.; Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.; Department of Medical Science, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia.; Institute for Infectious Diseases, University of Bern Institute for Infectious Diseases, Bern, Switzerland.; Clinical Bacteriology/Mycology, University Hospital Basel, Basel, Switzerland.; Centre for Infectious Disease Epidemiology & Research, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa.; Centre for Tuberculosis, National & WHO Supranational TB Reference Laboratory, a division of the National Health Laboratory Services, National Institute for Communicable Diseases, Johannesburg, South Africa.; Health Economics and Epidemiology Research Office, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    Rapid and comprehensive drug susceptibility testing (DST) is essential for diagnosing and treating drug-resistant tuberculosis effectively, and next-generation sequencing can be an effective genotypic DST method. We implemented and evaluated the performance of a nanopore targeted sequencing assay, called the Tuberculosis Drug Resistance Test (TBDR, Oxford Nanopore Diagnostics, Ltd., United Kingdom), which predicts drug resistance to 16 TB drugs, at a South African reference laboratory and a district diagnostic laboratory in Zambia. We compared the sequencing success rates between unprocessed and decontaminated sputum samples and determined the diagnostic accuracy against local DST (Xpert MTB/RIF Ultra, Xpert MTB/XDR, and BD BACTEC MGIT phenotypic DST). We prospectively sequenced 236 samples and have 148 samples with sequencing results from unprocessed and decontaminated sputum. We obtained successful sequencing results from 66.4% (94/148) unprocessed sputum samples and 75% (111/148) decontaminated samples. Sequencing success rates at the two sites differed, with 50.7% (36/71) successful sequencing results from unprocessed sputum in Zambia and 75.3% (58/77) in South Africa. Samples with "low" bacterial load, measured by Xpert MTB/RIF Ultra, tended to produce fewer successful sequencing results. TBDR sequencing predicted resistances in 48 samples, detecting resistance for rifampicin (
  • Thumbnail Image
    Item
    The Tuberculosis Sentinel Research Network (TB-SRN) of the International epidemiology Databases to Evaluate AIDS (IeDEA): protocol for a prospective cohort study in Africa, Southeast Asia and Latin America.
    (2024-Jan-09) Enane LA; Duda SN; Chanyachukul T; Bolton-Moore C; Navuluri N; Messou E; Mbonze N; McDade LR; Figueiredo MC; Ross J; Evans D; Diero L; Akpata R; Zotova N; Freeman A; Pierre MF; Rupasinghe D; Ballif M; Byakwaga H; de Castro N; Tabala M; Sterling TR; Sohn AH; Fenner L; Wools-Kaloustian K; Poda A; Yotebieng M; Huebner R; Marcy O; Vanderbilt Institute of Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA.; Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.; Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.; Division of General Internal Medicine, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.; Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.; Duke Global Health Institute, Duke University, Durham, North Carolina, USA.; Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.; Indiana University Center for Global Health Equity, Indianapolis, Indiana, USA.; Mbarara University of Science and Technology Faculty of Medicine, Mbarara, Uganda.; Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland.; Center for Infectious Disease Research in Zambia (CIDRZ), Lusaka, Zambia.; Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.; The Haitian Group for the Study of Kaposi's Sarcoma and Opportunistic Infections (GHESKIO), Port-au-Prince, Haiti.; The Kirby Institute, UNSW, Sydney, New South Wales, Australia.; Health Economics and Epidemiology Research Office, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.; Centre Hospitalier Universitaire Sourô Sanou, Bobo Dioulasso, Burkina Faso.; TREAT Asia/amfAR - The Foundation for AIDS Research, Bangkok, Thailand.; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.; Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo.; The Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA lenane@iu.edu.; Vanderbilt Tuberculosis Center, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.; Centre de Prise en Charge de Recherche et de Formation (Aconda-CePReF), Abidjan, Côte d'Ivoire.; Université de Bordeaux, Bordeaux, France.; Department of Medicine, Moi University College of Health Sciences, Eldoret, Kenya.
    INTRODUCTION: Tuberculosis (TB) is a leading infectious cause of death globally. It is the most common opportunistic infection in people living with HIV, and the most common cause of their morbidity and mortality. Following TB treatment, surviving individuals may be at risk for post-TB lung disease. The TB Sentinel Research Network (TB-SRN) provides a platform for coordinated observational TB research within the International epidemiology Databases to Evaluate AIDS (IeDEA) consortium. METHODS AND ANALYSIS: This prospective, observational cohort study will assess treatment and post-treatment outcomes of pulmonary TB (microbiologically confirmed or clinically diagnosed) among 2600 people aged ≥15 years, with and without HIV coinfection, consecutively enrolled at 16 sites in 11 countries, across 6 of IeDEA's global regions. Data regarding clinical and sociodemographic factors, mental health, health-related quality of life, pulmonary function, and laboratory and radiographic findings will be collected using standardised questionnaires and data collection tools, beginning from the initiation of TB treatment and through 12 months after the end of treatment. Data will be aggregated for proposed analyses. ETHICS AND DISSEMINATION: Ethics approval was obtained at all implementing study sites, including the Vanderbilt University Medical Center Human Research Protections Programme. Participants will provide informed consent; for minors, this includes both adolescent assent and the consent of their parent or primary caregiver. Protections for vulnerable groups are included, in alignment with local standards and considerations at sites. Procedures for requesting use and analysis of TB-SRN data are publicly available. Findings from TB-SRN analyses will be shared with national TB programmes to inform TB programming and policy, and disseminated at regional and global conferences and other venues.

CIDRZ copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback