Browsing by Author "Hobbins MA"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Characteristics and outcomes of adolescents living with perinatally acquired HIV within Southern Africa.(2020-Dec-01) Tsondai PR; Braithwaite K; Fatti G; Bolton Moore C; Chimbetete C; Rabie H; Phiri S; Sawry S; Eley B; Hobbins MA; Boulle A; Taghavi K; Sohn AH; Davies MA; Newlands Clinic, Harare, Zimbabwe.; Harriet Shezi Children's Clinic, Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg.; Lighthouse Trust Clinic, Lilongwe, Malawi.; Kheth' Impilo, AIDS Free Living, Cape Town.; Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.; Empilweni Services and Research Unit, Department of Paediatrics & Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital, University of the Witwatersrand, Johannesburg.; Red Cross War Memorial Children's Hospital and Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.; TREAT Asia/amfAR - The Foundation for AIDS Research, Bangkok, Thailand.; Department of Medicine, University of Alabama at Birmingham, Alabama, USA.; Department of Pediatrics and Child Health, Tygerberg Hospital, Stellenbosch University, Parow, South Africa.; Centre for Infectious Disease Epidemiology & Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town.; Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.; Research & Quality Unit, SolidarMed, Lucerne.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)BACKGROUND: Using data from 15 International epidemiology Databases to Evaluate AIDS in Southern Africa sites, we compared the characteristics and outcomes of adolescents living with perinatally acquired HIV (ALPH). METHODS: We included ALPH entering care aged less than 13 years with at least one HIV care visit during adolescence (10-19 years). We compared the characteristics and cross-sectional outcomes: transfer out, loss to follow-up (no visit in the 12 months prior to database closure), mortality, and retention between those who entered care aged less than 10 vs. aged 10-13 years; and explored predictors of mortality after age 13 years using Cox Proportional Hazards models. RESULTS: Overall, 16 229 (50% female) ALPH who entered HIV care aged less than 10 years and 8897 (54% female) aged 10-13 years were included and followed for 152 574 person-years. During follow-up, 94.1% initiated antiretroviral therapy, with those who entered care aged less than 10 more likely to have initiated antiretroviral therapy [97.9%, 95% confidence interval (CI) 97.6; 98.1%] than those who presented aged 10-13 years (87.3%, 95% CI 86.6; 88.0%). At the end of follow-up, 3% had died (entered care aged <10 vs. 10-13 years; 1.4 vs. 5.1%), 22% were loss to follow-up (16.2 vs. 33.4%), and 59% (66.4 vs. 45.4%) were retained. There was no difference in the risk of dying after the age of 13 years between adolescents entering care aged less than 10 vs. 10-13 years (adjusted hazard ratio 0.72; 95% CI 0.36; 1.42). CONCLUSION: Retention outcomes for ALPH progressively worsened with increasing age, with these outcomes substantially worse among adolescents entering HIV care aged 10-13 vs. less than 10 years.Item Characterizing the double-sided cascade of care for adolescents living with HIV transitioning to adulthood across Southern Africa.(2020-Jan) Tsondai PR; Sohn AH; Phiri S; Sikombe K; Sawry S; Chimbetete C; Fatti G; Hobbins MA; Technau KG; Rabie H; Bernheimer J; Fox MP; Judd A; Collins IJ; Davies MA; Newlands Clinic, Harare, Zimbabwe.; Lighthouse Trust Clinic, Lilongwe, Malawi.; Empilweni Services and Research Unit, Department of Paediatrics & Child Health, Rahima Moosa Mother and Child Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.; MRC Clinical Trials Unit at UCL, University College London (UCL), London, United Kingdom.; Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.; TREAT Asia/amfAR - The Foundation for AIDS Research, Bangkok, Thailand.; SolidarMed, Luzern, Switzerland.; Department of Paediatrics and Child Health, Tygerberg Academic Hospital, University of Stellenbosch, Stellenbosch, South Africa.; Harriet Shezi Children's Clinic, Wits Reproductive Health and HIV Research Unit, University of Witwatersrand, Johannesburg, South Africa.; Médecins Sans Frontiers, Khayelitsha, South Africa.; Kheth'Impilo, Cape Town, South Africa.; Department of Global Health and Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.; Health Economics and Epidemiology Research Office, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)INTRODUCTION: As adolescents and young people living with HIV (AYLH) age, they face a "transition cascade," a series of steps associated with transitions in their care as they become responsible for their own healthcare. In high-income countries, this usually includes transfer from predominantly paediatric/adolescent to adult clinics. In sub-Saharan Africa, paediatric HIV care is mostly provided in decentralized, non-specialist primary care clinics, where "transition" may not necessarily include transfer of care but entails becoming more autonomous for one's HIV care. Using different age thresholds as proxies for when "transition" to autonomy might occur, we evaluated pre- and post-transition outcomes among AYLH. METHODS: We included AYLH aged <16 years at enrolment, receiving antiretroviral therapy (ART) within International epidemiology Databases to Evaluate AIDS Southern Africa (IeDEA-SA) sites (2004 to 2017) with no history of transferring care. Using the ages of 16, 18, 20 and 22 years as proxies for "transition to autonomy," we compared the outcomes: no gap in care (≥2 clinic visits) and viral suppression (HIV-RNA <400 copies/mL) in the 12 months before and after each age threshold. Using log-binomial regression, we examined factors associated with no gap in care (retention) in the 12 months post-transition. RESULTS: A total of 5516 AYLH from 16 sites were included at "transition" age 16 (transition-16y), 3864 at 18 (transition-18y), 1463 at 20 (transition-20y) and 440 at 22 years (transition-22y). At transition-18y, in the 12 months pre- and post-transition, 83% versus 74% of AYLH had no gap in care (difference 9.3 (95% confidence interval (CI) 7.8 to 10.9)); while 65% versus 62% were virally suppressed (difference 2.7 (-1.0 to 6.5%)). The strongest predictor of being retained post-transition was having no gap in the preceding year, across all transition age thresholds (transition-16y: adjusted risk ratio (aRR) 1.72; 95% CI (1.60 to 1.86); transition-18y: aRR 1.76 (1.61 to 1.92); transition-20y: aRR 1.75 (1.53 to 2.01); transition-22y: aRR 1.47; (1.21 to 1.78)). CONCLUSIONS: AYLH with gaps in care need targeted support to prevent non-retention as they take on greater responsibility for their healthcare. Interventions to increase virologic suppression rates are necessary for all AYLH ageing to adulthood.Item Hepatitis B Infection, Viral Load and Resistance in HIV-Infected Patients in Mozambique and Zambia.(2016) Wandeler G; Musukuma K; Zürcher S; Vinikoor MJ; Llenas-García J; Aly MM; Mulenga L; Chi BH; Ehmer J; Hobbins MA; Bolton-Moore C; Hoffmann CJ; Egger M; Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.; Nucleo do investigacão Operational de Pemba, Pemba, Mozambique.; Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa.; Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, United States of America.; Institute for Infectious Diseases, University of Bern, Bern, Switzerland.; Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland.; SolidarMed, Ancuabe, Mozambique.; Department of Infectious diseases, University of Dakar, Dakar, Senegal.; Department of Medicine at University of Alabama, Birmingham, United States of America.; SolidarMed, Lucerne, Switzerland.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; Johns Hopkins University School of Medicine, Baltimore, United States of America.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)BACKGROUND: Few data on the virological determinants of hepatitis B virus (HBV) infection are available from southern Africa. METHODS: We enrolled consecutive HIV-infected adult patients initiating antiretroviral therapy (ART) at two urban clinics in Zambia and four rural clinics in Northern Mozambique between May 2013 and August 2014. HBsAg screening was performed using the Determine® rapid test. Quantitative real-time PCR and HBV sequencing were performed in HBsAg-positive patients. Risk factors for HBV infection were evaluated using Chi-square and Mann-Whitney tests and associations between baseline characteristics and high level HBV replication explored in multivariable logistic regression. RESULTS: Seventy-eight of 1,032 participants in Mozambique (7.6%, 95% confidence interval [CI]: 6.1-9.3) and 90 of 797 in Zambia (11.3%, 95% CI: 9.3-13.4) were HBsAg-positive. HBsAg-positive individuals were less likely to be female compared to HBsAg-negative ones (52.3% vs. 66.1%, p<0.001). Among 156 (92.9%) HBsAg-positive patients with an available measurement, median HBV viral load was 13,645 IU/mL (interquartile range: 192-8,617,488 IU/mL) and 77 (49.4%) had high values (>20,000 UI/mL). HBsAg-positive individuals had higher levels of ALT and AST compared to HBsAg-negative ones (both p<0.001). In multivariable analyses, male sex (adjusted odds ratio: 2.59, 95% CI: 1.22-5.53) and CD4 cell count below 200/μl (2.58, 1.20-5.54) were associated with high HBV DNA. HBV genotypes A1 (58.8%) and E (38.2%) were most prevalent. Four patients had probable resistance to lamivudine and/or entecavir. CONCLUSION: One half of HBsAg-positive patients demonstrated high HBV viremia, supporting the early initiation of tenofovir-containing ART in HIV/HBV-coinfected adults.