Repository logo
Communities & Collections
All of CIDRZ Publications
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Laban NM"

Filter results by typing the first few letters
Now showing 1 - 13 of 13
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Assessment of the influence of ABO blood groups on oral cholera vaccine immunogenicity in a cholera endemic area in Zambia.
    (2023-Jan-23) Chisenga CC; Bosomprah S; Chilyabanyama ON; Alabi P; Simuyandi M; Mwaba J; Ng'ombe H; Laban NM; Luchen CC; Chilengi R; Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia.; Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia. Caroline.Chisenga@cidrz.org.; School of Medicine, University of Lusaka, Lusaka, Zambia.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    BACKGROUND: Histo-blood group antigens (HBGAs) which include the ABO and Lewis antigen systems have been known for determining predisposition to infections. For instance, blood group O individuals have a higher risk of severe illness due to V. cholerae compared to those with non-blood group O antigens. We set out to determine the influence that these HBGAs have on oral cholera vaccine immunogenicity and seroconversion in individuals residing within a cholera endemic area in Zambia. METHODOLOGY: We conducted a longitudinal study nested under a clinical trial in which samples from a cohort of 223 adults who were vaccinated with two doses of Shanchol™ and followed up over 4 years were used. We measured serum vibriocidal geometric mean titers (GMTs) at Baseline, Day 28, Months 6, 12, 24, 30, 36 and 48 in response to the vaccine. Saliva obtained at 1 year post vaccination was tested for HBGA phenotypes and secretor status using an enzyme-linked immunosorbent assay (ELISA). RESULTS: Of the 133/223 participants included in the final analysis, the majority were above 34 years old (58%) and of these, 90% were males. Seroconversion rates to V. cholerae O1 Inaba with non-O (23%) and O (30%) blood types were comparable. The same pattern was observed against O1 Ogawa serotype between non-O (25%) and O (35%). This trend continued over the four-year follow-up period. Similarly, no significant differences were observed in seroconversion rates between the non-secretors (26%) and secretors (36%) against V. cholerae O1 Inaba. The same was observed for O1 Ogawa in non-secretors (22%) and the secretors (36%). CONCLUSION: Our results do not support the idea that ABO blood grouping influence vaccine uptake and responses against cholera.
  • Thumbnail Image
    Item
    Association of biomarkers of enteric dysfunction, systemic inflammation, and growth hormone resistance with seroconversion to oral rotavirus vaccine: A lasso for inference approach.
    (2023) Mwila-Kazimbaya K; Bosomprah S; Chilyabanyama ON; Chisenga CC; Chibuye M; Laban NM; Simuyandi M; Huffer B; Iturriza-Gomara M; Choy RKM; Chilengi R; Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.; Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana.; PATH, Seattle, Washington, United States of America.; Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; Cincinnati Childrens Hospital Medical Center, Cincinnati, Ohio, United States of America.; Centre for Vaccine Innovation and Access, PATH, Geneve, Switzerland.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    BACKGROUND: Rotavirus gastroenteritis remains a leading cause of morbidity and mortality despite the introduction of vaccines. Research shows there are several factors contributing to the reduced efficacy of rotavirus vaccines in low- and middle-income settings. Proposed factors include environmental enteric dysfunction (EED), malnutrition, and immune dysfunction. This study aimed to assess the effect of these factors on vaccine responses using a machine learning lasso approach. METHODS: Serum samples from two rotavirus clinical trials (CVIA 066 n = 99 and CVIA 061 n = 124) were assessed for 11 analytes using the novel Micronutrient and EED Assessment Tool (MEEDAT) multiplex ELISA. Immune responses to oral rotavirus vaccines (Rotarix, Rotavac, and Rotavac 5D) as well as a parenteral rotavirus vaccine (trivalent P2-VP8) were also measured and machine learning using the lasso approach was then applied to investigate any associations between immune responses and environmental enteric dysfunction, systemic inflammation, and growth hormone resistance biomarkers. RESULTS: Both oral and parenteral rotavirus vaccine responses were negatively associated with retinol binding protein 4 (RBP4), albeit only weakly for oral vaccines. The parenteral vaccine responses were positively associated with thyroglobulin (Tg) and histidine-rich protein 2 (HRP2) for all three serotypes (P8, P6 and P4), whilst intestinal fatty acid binding protein (I-FABP) was negatively associated with P6 and P4, but not P8, and soluble transferrin receptor (sTfR) was positively associated with P6 only. CONCLUSION: MEEDAT successfully measured biomarkers of growth, systemic inflammation, and EED in infants undergoing vaccination, with RBP4 being the only analyte associated with both oral and parenteral rotavirus vaccine responses. Tg and HRP2 were associated with responses to all three serotypes in the parenteral vaccine, while I-FABP and sTfR results indicated possible strain specific immune responses to parenteral immunization.
  • Thumbnail Image
    Item
    Characterization of Rotavirus Strains Responsible for Breakthrough Diarrheal Diseases among Zambian Children Using Whole Genome Sequencing.
    (2023-Nov-26) Mwape I; Laban NM; Chibesa K; Moono A; Silwamba S; Malisheni MM; Chisenga C; Chauwa A; Simusika P; Phiri M; Simuyandi M; Chilengi R; De Beer C; Ojok D; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.; Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka 10101, Zambia.; Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa.; Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53706-13380, USA.; University Teaching Hospitals, Lusaka 10101, Zambia.; Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia.; Division of Medical Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein P.O. Box 339, South Africa.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    The occurrence of rotavirus (RV) infection among vaccinated children in high-burden settings poses a threat to further disease burden reduction. Genetically altered viruses have the potential to evade both natural infection and vaccine-induced immune responses, leading to diarrheal diseases among vaccinated children. Studies characterizing RV strains responsible for breakthrough infections in resource-limited countries where RV-associated diarrheal diseases are endemic are limited. We aimed to characterize RV strains detected in fully vaccinated children residing in Zambia using next-generation sequencing. We conducted whole genome sequencing on Illumina MiSeq. Whole genome assembly was performed using Geneious Prime 2023.1.2. A total of 76 diarrheal stool specimens were screened for RV, and 4/76 (5.2%) were RV-positive. Whole genome analysis revealed RVA/Human-wt/ZMB/CIDRZ-RV2088/2020/
  • Thumbnail Image
    Item
    Comparing growth velocity of HIV exposed and non-exposed infants: An observational study of infants enrolled in a randomized control trial in Zambia.
    (2021) Chilyabanyama ON; Chilengi R; Laban NM; Chirwa M; Simunyandi M; Hatyoka LM; Ngaruye I; Iqbal NT; Bosomprah S; Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana.; College of Science and Technology, University of Rwanda, Kigali, Rwanda.; Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; Aga Khan University Hospital, Karachi, Pakistan.; African Centre of Excellence in Data Science (ACEDS), University of Rwanda, Kigali, Rwanda.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    BACKGROUND: Impaired growth among infants remains one of the leading nutrition problems globally. In this study, we aimed to compare the growth trajectory rate and evaluate growth trajectory characteristics among children, who are HIV exposed uninfected (HEU) and HIV unexposed uninfected (HUU), under two years in Zambia. METHOD: Our study used data from the ROVAS II study (PACTR201804003096919), an open-label randomized control trial of two verses three doses of live, attenuated, oral RotarixTM administered 6 &10 weeks or at 6 &10 weeks plus an additional dose at 9 months of age, conducted at George clinic in Lusaka, Zambia. Anthropometric measurements (height and weight) were collected on all scheduled and unscheduled visits. We defined linear growth velocity as the rate of change in height and estimated linear growth velocity as the first derivative of the mixed effect model with fractional polynomial transformations and, thereafter, used the second derivative test to determine the peak height and age at peak heigh. RESULTS: We included 212 infants in this study with median age 6 (IQR: 6-6) weeks of age. Of these 97 (45.3%) were female, 35 (16.4%) were stunted, and 59 (27.6%) were exposed to HIV at baseline. Growth velocity was consistently below the 3rd percentile of the WHO linear growth standard for HEU and HUU children. The peak height and age at peak height among HEU children were 74.7 cm (95% CI = 73.9-75.5) and 15.5 months (95% CI = 14.7-16.3) respectively and those for HUU were 73 cm (95% CI = 72.1-74.0) and 15.6 months (95% CI = 14.5-16.6) respectively. CONCLUSION: We found no difference in growth trajectories between infants who are HEU and HUU. However, the data suggests that poor linear growth is universal and profound in this cohort and may have already occurred in utero.
  • Thumbnail Image
    Item
    Effect of innate antiviral glycoproteins in breast milk on seroconversion to rotavirus vaccine (Rotarix) in children in Lusaka, Zambia.
    (2017) Mwila-Kazimbaya K; Garcia MP; Bosomprah S; Laban NM; Chisenga CC; Permar SR; Simuyandi M; Munsaka S; Chilengi R; Department of Paediatrics, Human Vaccine Institute, Duke University, Durham, North Carolina.; University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, United States of America.; Department of biomedical sciences, School of Health sciences, University of Zambia, Lusaka, Zambia.; Department of Biostatistics, School of Public Health, University of Ghana, Legon, Accra, Ghana.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    INTRODUCTION: Rotavirus vaccines have been introduced into national immunization programmes to mitigate morbidity and mortality associated rotavirus diarrhoea. Lower vaccine effectiveness has however been noted in low-middle income countries, but little is known about the role of maternal components found in breast milk. This study assessed the effect of lactoferrin, lactadherin, and tenascin-c on rotavirus vaccine seroconversion. METHODS: This was a retrospective cohort study of 128 infants who had been fully immunized with Rotarix™. Serum samples were collected from the infant at baseline and one month after second rotavirus vaccine dose. Breast milk samples were collected from mothers at baseline. Standard ELISA was used to determine titres of rotavirus-specific immunologlobulin G and A in breast milk and serum as well as concentrations of lactoferrin, lactadherin, and tenascin-c. Poisson regression model with robust standard error was used to estimate the effect of breast milk components on seroconversion. The components were modelled on log base 2 so that the effect would be interpreted as a doubling of the concentration. RESULTS: In a multivariable analysis adjusting for maternal age, maternal HIV status, seropositivity at baseline, sex, age of child at vaccination as well as breast milk IgA and IgG, we found evidence of independent effect of LA (Adjusted IRR = 0.95; 95% CI = 0.91-0.99; P = 0.019) on seroconversion while there was no evidence for TNC (Adjusted IRR = 1.00; 95% CI = 0.85-1.17; P = 0.967) and LF (Adjusted RR = 1.01; 95% CI = 0.96-1.05); P = 0.802). We explored the joint effects of the three components but we found no evidence (Adjusted RR = 0.95; 95% CI = 0.81; P = 0.535). CONCLUSION: High breast milk concentrations of lactadherin might play a role in infant's failure to seroconvert to rotavirus vaccines. Further research to understand this observed association is an important consideration.
  • Thumbnail Image
    Item
    Evaluation of ROTARIX
    (2023-Feb-03) Laban NM; Bosomprah S; Simuyandi M; Chibuye M; Chauwa A; Chirwa-Chobe M; Sukwa N; Chipeta C; Velu R; Njekwa K; Mubanga C; Mwape I; Goodier MR; Chilengi R; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.; Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, Paasheuvelweg 25, 1105 BP Amsterdam, The Netherlands.; Division of Medical Microbiology, Department of Pathology, Stellenbosch University & National Health Laboratory Service, Tygerberg Hospital Francie van Zijl Drive, Tygerberg, P.O. Box 241, Cape Town 8000, South Africa.; Department of Biostatistics, School of Public Health, University of Ghana, Accra P.O. Box LG13, Ghana.; Flow Cytometry and Immunology Facility, Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul P.O. Box 273, The Gambia.; Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia.; Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    Oral rotavirus vaccines show diminished immunogenicity in low-resource settings where rotavirus burden is highest. This study assessed the safety and immune boosting effect of a third dose of oral ROTARIX
  • Thumbnail Image
    Item
    Immunogenicity of rotavirus vaccine (RotarixTM) in infants with environmental enteric dysfunction.
    (2017) Mwape I; Bosomprah S; Mwaba J; Mwila-Kazimbaya K; Laban NM; Chisenga CC; Sijumbila G; Simuyandi M; Chilengi R; Department of Physiological sciences,University of Zambia, Lusaka, Zambia.; Center for Infectious Disease Research in Zambia, Lusaka, Zambia.; Department of Biostatistics, School of Public Health, University of Ghana, Legon, Accra, Ghana.; University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    INTRODUCTION: Deployment of rotavirus vaccines has contributed to significant declines in diarrheal morbidity and mortality globally. Unfortunately, vaccine performance in low-middle income countries (LMICs) is generally lower than in developed countries. The cause for this has been associated with several host and maternal factors including poor water sanitation and hygiene (WASH) status, which are predominant in LMICs. More recently, environmental enteric dysfunction (EED) has specifically been hypothesized to contribute to poor vaccine uptake and response. The aim of this study was to examine the association between serological biomarkers of EED and seroconversion to rotavirus vaccine in Zambian infants. METHODS: This was a retrospective cohort study of 142 infants who had been fully immunized with Rotarix™, and had known seroconversion status. Seroconversion was defined as 4-fold or more increase in rotavirus-specific IgA titres between pre-vaccination and one month post-dose two vaccination. We performed ELISA assays to assess soluble CD14 (sCD14), Endotoxin Core IgG Antibodies (EndoCAb), intestinal fatty acid binding protein (i-FABP) and Zonulin according to the manufacturers protocols. Generalised linear model with family-poisson, link-log and robust standard error was used to estimate the independent effects of biomarkers on seroconversion adjusting for important cofounders. RESULTS: The median concentration of Zonulin, Soluble CD14, EndoCaB, and IFABP were 209.3 (IQR = 39.7, 395.1), 21.5 (IQR = 21.5, 21.5), 0.3 (IQR = 0.3, 0.3), and 107.7 (IQR = 6.4, 1141.4) respectively. In multivariable analyses adjusting for the independent effect of other biomarkers and confounders (i.e. age of child at vaccination, breast-milk anti-rotavirus IgA, infant serum anti-rotavirus IgG, and IgA seropositivity at baseline), there was strong evidence of about 24% increase in seroconversion due to doubling Zonulin concentration (Adjusted risk ratio (aRR) = 1.24; 95% CI = 1.12 to1.37; p<0.0001). Similarly, we found about 7% increase in seroconversion due to doubling IFABP concentration (aRR = 1.07; 95% CI = 1.02 to 1.13; p = 0.006). CONCLUSION: We found that high levels of zonulin and IFABP played a role in seroconversion. It is plausible that increased gut permeability in EED allows greater uptake of the live virus within the vaccine, but later consequences result in deleterious local structural distortions and malabsorption syndromes.
  • Thumbnail Image
    Item
    In-vitro inhibitory effect of maternal breastmilk components on rotavirus vaccine replication and association with infant seroconversion to live oral rotavirus vaccine.
    (2020) Kazimbaya KM; Chisenga CC; Simuyandi M; Phiri CM; Laban NM; Bosomprah S; Permar SR; Munsaka S; Chilengi R; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; Department of Pediatrics, Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America.; Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia.; Department of Biostatistics, School of Public Health, University of Ghana, Legon, Accra, Ghana.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    BACKGROUND: Despite contributing to a significant reduction in rotavirus associated diarrhoea in highly burdened low- and middle-income countries, live attenuated, oral rotavirus vaccines have lower immunogenicity and efficacy in these settings in comparison to more developed countries. Breastmilk has been implicated among factors contributing to this lowered oral vaccine efficacy. We conducted in-vitro experiments to investigate the inhibitory effects of maternal antibody and other non-antibody components in breastmilk on rotavirus vaccine strain (Rotarix) multiplication in MA104 cell culture system and assessed associations with in-vivo vaccine seroconversion in vaccinated infants. METHODS: Breastmilk samples were collected from mothers before routine rotavirus vaccination of their infant at 6 weeks of age. For each sample, whole breastmilk, purified IgA, purified IgG and IgG and IgA depleted breastmilk samples were prepared as exposure preparations. A 96 well microtitre plate was set up for each sample including a control in which only MA104 cells were grown as well as a virus control with MA104 cells and virus only. The outcome of interest was 50% inhibition dilution of each of the exposure preparations calculated as the titer at which 50% of virus dilution was achieved. Samples from 30 women were tested and correlated to vaccine seroconversion status of the infant. HIV status was also correlated to antiviral breastmilk proteins. RESULTS: The mean 50% inhibitory dilution titer when whole breastmilk was added to virus infected MA104 cells was 14.3 (95% CI: 7.1, 22.7). Incubation with purified IgG resulted in a mean 50% inhibitory dilution of 5 (95%CI -1.6, 11.6). Incubating with purified IgA resulted in a mean 50% inhibitory dilution of 6.5 (95% CI -0.7, 13.7) and IgG and IgA depleted breastmilk did not yield any inhibition with a titer of 1.06 (95%CI 0.9, 1.2). Higher milk IgA levels contributed to a failure of infants to seroconvert. HIV was also not associated with any antiviral breastmilk proteins. DISCUSSION AND CONCLUSION: Whole breastmilk and breastmilk purified IgG and IgA fractions showed inhibitory activity against the rotavirus vaccine Rotarix™ whilst IgA and IgG depleted breastmilk with non-antibody breastmilk fraction failed to show any inhibition activity in-vitro. These findings suggest that IgA and IgG may have functional inhibitory properties and indicates a possible mechanism of how mothers in rotavirus endemic areas with high titres of IgA and IgG may inhibit viral multiplication in the infant gut and would potentially contribute to the failure of their infants to serocovert. There was not association of HIV with either lactoferrin, lactadherin or tenascin-C concentrations.
  • Thumbnail Image
    Item
    Maternal and Infant Histo-Blood Group Antigen (HBGA) Profiles and Their Influence on Oral Rotavirus Vaccine (Rotarix
    (2023-Jul-31) Chauwa A; Bosomprah S; Laban NM; Phiri B; Chibuye M; Chilyabanyama ON; Munsaka S; Simuyandi M; Mwape I; Mubanga C; Chobe MC; Chisenga C; Chilengi R; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.; Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands.; Department of Biostatistics, School of Public Health, University of Ghana, Accra P.O. Box LG13, Ghana.; Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia.; Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    Live-attenuated, oral rotavirus vaccines have significantly reduced rotavirus-associated diarrhoea morbidity and infant mortality. However, vaccine immunogenicity is diminished in low-income countries. We investigated whether maternal and infant intrinsic susceptibility to rotavirus infection via histo-blood group antigen (HBGA) profiles influenced rotavirus (ROTARIX
  • Thumbnail Image
    Item
    Seroconversion and Kinetics of Vibriocidal Antibodies during the First 90 Days of Re-Vaccination with Oral Cholera Vaccine in an Endemic Population.
    (2024-Apr-08) Chisenga CC; Phiri B; Ng'ombe H; Muchimba M; Musukuma-Chifulo K; Silwamba S; Laban NM; Luchen C; Liswaniso F; Chibesa K; Mubanga C; Mwape K; Simuyandi M; Cunningham AF; Sack D; Bosomprah S; Department of Biostatistics, School of Public Health, University of Ghana, Accra P.O. Box LG13, Ghana.; Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia.; Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.; Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    Despite the successful introduction of oral cholera vaccines, Zambia continues to experience multiple, sporadic, and protracted cholera outbreaks in various parts of the country. While vaccines have been useful in staying the cholera outbreaks, the ideal window for re-vaccinating individuals resident in cholera hotspot areas remains unclear. Using a prospective cohort study design, 225 individuals were enrolled and re-vaccinated with two doses of Shanchol™, regardless of previous vaccination, and followed-up for 90 days. Bloods were collected at baseline before re-vaccination, at day 14 prior to second dosing, and subsequently on days 28, 60, and 90. Vibriocidal assay was performed on samples collected at all five time points. Our results showed that anti-LPS and vibriocidal antibody titers increased at day 14 after re-vaccination and decreased gradually at 28, 60, and 90 days across all the groups. Seroconversion rates were generally comparable in all treatment arms. We therefore conclude that vibriocidal antibody titers generated in response to re-vaccination still wane quickly, irrespective of previous vaccination status. However, despite the observed decline, the levels of vibriocidal antibodies remained elevated over baseline values across all groups, an important aspect for Zambia where there is no empirical evidence as to the ideal time for re-vaccination.
  • Thumbnail Image
    Item
    Serum vibriocidal responses when second doses of oral cholera vaccine are delayed 6 months in Zambia.
    (2021-Jul-22) Mwaba J; Chisenga CC; Xiao S; Ng'ombe H; Banda E; Shea P; Mabula-Bwalya C; Mwila-Kazimbaya K; Laban NM; Alabi P; Chirwa-Chobe M; Simuyandi M; Harris J; Iyer AS; Bosomprah S; Scalzo P; Murt KN; Ram M; Kwenda G; Ali M; Sack DA; Chilengi R; Debes AK; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. Electronic address: adebes1@jhu.edu.; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.; Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia.; Research Department, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; Research Department, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia; Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia.; Research Department, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia; London School of Hygiene and Tropical Medicine, United Kingdom.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    Two-dose killed oral cholera vaccines (OCV) are currently being used widely to control cholera. The standard dose-interval for OCV is 2 weeks; however, during emergency use of the vaccine, it may be more appropriate to use the available doses to quickly give a single dose to more people and give a delayed second dose when more vaccine becomes available. This study is an open label, randomized, phase 2 clinical trial of the vibriocidal response induced by OCV, comparing the responses when the second dose was given either 2 weeks (standard dose interval) or 6 months (extended dose interval) after the first dose. Vaccine was administered to healthy participants > 1 year of age living in the Lukanga Swamps area of Zambia. Three age cohorts (<5 years, 5-14 years, and ≥ 15 years) were randomized to the either dose-interval. The primary outcome was the vibriocidal GMT 14 days after the second dose. 156 of 172 subjects enrolled in the study were included in this analysis. The Inaba vibriocidal titers were not significantly different 14 days post dose two for a standard dose-interval GMT: 45.6 (32-64.9), as compared to the GMT 47.6 (32.6-69.3), for the extended dose-interval, (p = 0.87). However, the Ogawa vibriocidal GMTs were significantly higher 14 days post dose two for the extended-dose interval at 87.6 (58.9-130.4) compared to the standard dose-interval group at 49.7 (34.1-72.3), p = 0.04. Vibriocidal seroconversion rates (a > 4-fold rise in vibriocidal titer) were not significantly different between dose-interval groups. This study demonstrated that vibriocidal titers 14 days after a second dose when given at an extended\ dose interval were similar to the standard dose-interval. The findings suggest that a flexible dosing schedule may be considered when epidemiologically appropriate. The trial was registered at Clinical Trials.gov (NCT03373669).
  • Thumbnail Image
    Item
    Shigella-specific antibodies in the first year of life among Zambian infants: A longitudinal cohort study.
    (2021) Chisenga CC; Bosomprah S; Simuyandi M; Mwila-Kazimbaya K; Chilyabanyama ON; Laban NM; Bialik A; Asato V; Meron-Sudai S; Frankel G; Cohen D; Chilengi R; Imperial College London, London, United Kingdom.; School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    INTRODUCTION: Shigellosis, is a leading cause of moderate-to-severe diarrhoea and related mortality in young children in low and middle income countries (LMICs). Knowledge on naturally acquired immunity can support the development of Shigella candidate vaccines mostly needed in LMICs. We aimed to quantify Shigella-specific antibodies of maternal origin and those naturally acquired in Zambian infants. METHODS: Plasma samples collected from infants at age 6, 14 and 52-weeks were tested for Shigella (S. sonnei and S. flexneri 2a) lipopolysaccharide (LPS) antigen specific immunoglobulin G (IgG) and A (IgA) by enzyme-linked immunosorbent assay. RESULTS: At 6 weeks infant age, the IgG geometric mean titres (GMT) against S. sonnei (N = 159) and S. flexneri 2a (N = 135) LPS were 311 (95% CI 259-372) and 446 (95% CI 343-580) respectively. By 14 weeks, a decline in IgG GMT was observed for both S. sonnei to 104 (95% CI 88-124), and S. flexneri 2a to 183 (95% CI 147-230). Both S. sonnei and S. flexneri 2a specific IgG GMT continued to decrease by 52 weeks infant age when compared to 6 weeks. In 27% and 8% of infants a significant rise in titre (4 fold and greater) against S. flexneri 2a and S. sonnei LPS, respectively, was detected between the ages of 14 and 52 weeks. IgA levels against both species LPS were very low at 6 and 14 weeks and raised significantly against S. flexneri 2a and S. sonnei LPS in 29% and 10% of the infants, respectively. CONCLUSION: In our setting, transplacental IgG anti-Shigella LPS is present at high levels in early infancy, and begins to decrease by age 14 weeks. Our results are consistent with early exposure to Shigella and indicate naturally acquired IgG and IgA antibodies to S. flexneri 2a and S. sonnei LPS in part of infants between 14 and 52 weeks of age. These results suggest that a potential timing of vaccination would be after 14 and before 52 weeks of age to ensure early infant protection against shigellosis.
  • Thumbnail Image
    Item
    T-Cell Responses after Rotavirus Infection or Vaccination in Children: A Systematic Review.
    (2022-Feb-23) Laban NM; Goodier MR; Bosomprah S; Simuyandi M; Chisenga C; Chilyabanyama ON; Chilengi R; Department of Biostatistics, School of Public Health, University of Ghana, Accra P.O. Box LG13, Ghana.; Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia.; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.; Flow Cytometry and Immunology Facility, Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul P.O. Box 273, The Gambia.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)
    Cellular immunity against rotavirus in children is incompletely understood. This review describes the current understanding of T-cell immunity to rotavirus in children. A systematic literature search was conducted in Embase, MEDLINE, Web of Science, and Global Health databases using a combination of "t-cell", "rotavirus" and "child" keywords to extract data from relevant articles published from January 1973 to March 2020. Only seventeen articles were identified. Rotavirus-specific T-cell immunity in children develops and broadens reactivity with increasing age. Whilst occurring in close association with antibody responses, T-cell responses are more transient but can occur in absence of detectable antibody responses. Rotavirus-induced T-cell immunity is largely of the gut homing phenotype and predominantly involves Th1 and cytotoxic subsets that may be influenced by IL-10 Tregs. However, rotavirus-specific T-cell responses in children are generally of low frequencies in peripheral blood and are limited in comparison to other infecting pathogens and in adults. The available research reviewed here characterizes the T-cell immune response in children. There is a need for further research investigating the protective associations of rotavirus-specific T-cell responses against infection or vaccination and the standardization of rotavirus-specific T-cells assays in children.

CIDRZ copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback