Browsing by Author "Sawry S"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Characteristics and outcomes of adolescents living with perinatally acquired HIV within Southern Africa.(2020-Dec-01) Tsondai PR; Braithwaite K; Fatti G; Bolton Moore C; Chimbetete C; Rabie H; Phiri S; Sawry S; Eley B; Hobbins MA; Boulle A; Taghavi K; Sohn AH; Davies MA; Newlands Clinic, Harare, Zimbabwe.; Harriet Shezi Children's Clinic, Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg.; Lighthouse Trust Clinic, Lilongwe, Malawi.; Kheth' Impilo, AIDS Free Living, Cape Town.; Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.; Empilweni Services and Research Unit, Department of Paediatrics & Child Health, Faculty of Health Sciences, Rahima Moosa Mother and Child Hospital, University of the Witwatersrand, Johannesburg.; Red Cross War Memorial Children's Hospital and Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.; TREAT Asia/amfAR - The Foundation for AIDS Research, Bangkok, Thailand.; Department of Medicine, University of Alabama at Birmingham, Alabama, USA.; Department of Pediatrics and Child Health, Tygerberg Hospital, Stellenbosch University, Parow, South Africa.; Centre for Infectious Disease Epidemiology & Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town.; Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland.; Research & Quality Unit, SolidarMed, Lucerne.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)BACKGROUND: Using data from 15 International epidemiology Databases to Evaluate AIDS in Southern Africa sites, we compared the characteristics and outcomes of adolescents living with perinatally acquired HIV (ALPH). METHODS: We included ALPH entering care aged less than 13 years with at least one HIV care visit during adolescence (10-19 years). We compared the characteristics and cross-sectional outcomes: transfer out, loss to follow-up (no visit in the 12 months prior to database closure), mortality, and retention between those who entered care aged less than 10 vs. aged 10-13 years; and explored predictors of mortality after age 13 years using Cox Proportional Hazards models. RESULTS: Overall, 16 229 (50% female) ALPH who entered HIV care aged less than 10 years and 8897 (54% female) aged 10-13 years were included and followed for 152 574 person-years. During follow-up, 94.1% initiated antiretroviral therapy, with those who entered care aged less than 10 more likely to have initiated antiretroviral therapy [97.9%, 95% confidence interval (CI) 97.6; 98.1%] than those who presented aged 10-13 years (87.3%, 95% CI 86.6; 88.0%). At the end of follow-up, 3% had died (entered care aged <10 vs. 10-13 years; 1.4 vs. 5.1%), 22% were loss to follow-up (16.2 vs. 33.4%), and 59% (66.4 vs. 45.4%) were retained. There was no difference in the risk of dying after the age of 13 years between adolescents entering care aged less than 10 vs. 10-13 years (adjusted hazard ratio 0.72; 95% CI 0.36; 1.42). CONCLUSION: Retention outcomes for ALPH progressively worsened with increasing age, with these outcomes substantially worse among adolescents entering HIV care aged 10-13 vs. less than 10 years.Item Characterizing the double-sided cascade of care for adolescents living with HIV transitioning to adulthood across Southern Africa.(2020-Jan) Tsondai PR; Sohn AH; Phiri S; Sikombe K; Sawry S; Chimbetete C; Fatti G; Hobbins MA; Technau KG; Rabie H; Bernheimer J; Fox MP; Judd A; Collins IJ; Davies MA; Newlands Clinic, Harare, Zimbabwe.; Lighthouse Trust Clinic, Lilongwe, Malawi.; Empilweni Services and Research Unit, Department of Paediatrics & Child Health, Rahima Moosa Mother and Child Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.; MRC Clinical Trials Unit at UCL, University College London (UCL), London, United Kingdom.; Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.; TREAT Asia/amfAR - The Foundation for AIDS Research, Bangkok, Thailand.; SolidarMed, Luzern, Switzerland.; Department of Paediatrics and Child Health, Tygerberg Academic Hospital, University of Stellenbosch, Stellenbosch, South Africa.; Harriet Shezi Children's Clinic, Wits Reproductive Health and HIV Research Unit, University of Witwatersrand, Johannesburg, South Africa.; Médecins Sans Frontiers, Khayelitsha, South Africa.; Kheth'Impilo, Cape Town, South Africa.; Department of Global Health and Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.; Health Economics and Epidemiology Research Office, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)INTRODUCTION: As adolescents and young people living with HIV (AYLH) age, they face a "transition cascade," a series of steps associated with transitions in their care as they become responsible for their own healthcare. In high-income countries, this usually includes transfer from predominantly paediatric/adolescent to adult clinics. In sub-Saharan Africa, paediatric HIV care is mostly provided in decentralized, non-specialist primary care clinics, where "transition" may not necessarily include transfer of care but entails becoming more autonomous for one's HIV care. Using different age thresholds as proxies for when "transition" to autonomy might occur, we evaluated pre- and post-transition outcomes among AYLH. METHODS: We included AYLH aged <16 years at enrolment, receiving antiretroviral therapy (ART) within International epidemiology Databases to Evaluate AIDS Southern Africa (IeDEA-SA) sites (2004 to 2017) with no history of transferring care. Using the ages of 16, 18, 20 and 22 years as proxies for "transition to autonomy," we compared the outcomes: no gap in care (≥2 clinic visits) and viral suppression (HIV-RNA <400 copies/mL) in the 12 months before and after each age threshold. Using log-binomial regression, we examined factors associated with no gap in care (retention) in the 12 months post-transition. RESULTS: A total of 5516 AYLH from 16 sites were included at "transition" age 16 (transition-16y), 3864 at 18 (transition-18y), 1463 at 20 (transition-20y) and 440 at 22 years (transition-22y). At transition-18y, in the 12 months pre- and post-transition, 83% versus 74% of AYLH had no gap in care (difference 9.3 (95% confidence interval (CI) 7.8 to 10.9)); while 65% versus 62% were virally suppressed (difference 2.7 (-1.0 to 6.5%)). The strongest predictor of being retained post-transition was having no gap in the preceding year, across all transition age thresholds (transition-16y: adjusted risk ratio (aRR) 1.72; 95% CI (1.60 to 1.86); transition-18y: aRR 1.76 (1.61 to 1.92); transition-20y: aRR 1.75 (1.53 to 2.01); transition-22y: aRR 1.47; (1.21 to 1.78)). CONCLUSIONS: AYLH with gaps in care need targeted support to prevent non-retention as they take on greater responsibility for their healthcare. Interventions to increase virologic suppression rates are necessary for all AYLH ageing to adulthood.Item Effect of antiretroviral therapy care interruptions on mortality in children living with HIV.(2022-Apr-01) Davies C; Johnson L; Sawry S; Chimbetete C; Eley B; Vinikoor M; Technau KG; Ehmer J; Rabie H; Phiri S; Tanser F; Malisita K; Fatti G; Osler M; Wood R; Newton S; Haas A; Davies MA; Newlands Clinic, Harare, Zimbabwe.; Africa Centre for Health and Population Studies, University of KwaZulu-Natal, Somkhele, South Africa.; Red Cross War Memorial Children's Hospital and Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa.; Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town.; School of Public Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.; Department of Paediatrics and Child Health, Tygerberg Academic Hospital, University of Stellenbosch, Stellenbosch, South Africa.; Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Harriet Shezi Children's Clinic, Chris Hani Baragwanath Academic Hospital, Soweto, South Africa.; Institute of Social and Preventive Medicine, University of Bern, Switzerland.; Queen Elizabeth Central Hospital, Blantyre, Malawi.; Kheth'Impilo AIDS Free Living.; Division of Epidemiology and Biostatistics, Department of Global Health, Stellenbosch University.; Gugulethu HIV Programme and Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa.; SolidarMed, Lucerne, Switzerland.; Lighthouse Trust Clinic, Kamuzu Central Hospital, Lilongwe, Malaysia.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)OBJECTIVE: To evaluate the characteristics and outcomes of HIV-infected children that have care interruptions, during which the child's health status and use of medication is unknown. DESIGN: We included data on children initiating ART between 2004 and 2016 at less than 16 years old at 16 International Epidemiologic Databases to Evaluate AIDS Southern Africa cohorts. Children were classified as loss to follow up (LTFU) if they had not attended clinic for more than 180 days. Children had a care interruption if they were classified as LTFU, and subsequently returned to care. Children who died within 180 days of ART start were excluded. METHODS: The main outcome was all cause mortality. Two exposed groups were considered: those with a first care interruption within the first 6 months on ART, and those with a first care interruption after 6 months on ART. Adjusted hazard ratios were determined using a Cox regression model. RESULTS: Among 53 674 children included, 23 437 (44%) had a care interruption, of which 10 629 (20%) had a first care interruption within 6 months on ART and 12 808 (24%) had a first care interruption after 6 months on ART. Increased mortality was associated with a care interruption within 6 months on ART [adjusted hazard ratio (AHR) = 1.52, 95% CI 1.12-2.04] but not with a care interruption after 6 months on ART (AHR = 1.05, 95% CI 0.77-1.44). CONCLUSION: The findings suggest that strengthening retention of children in care in the early period after ART initiation is critical to improving paediatric ART outcomes.Item Stunting and growth velocity of adolescents with perinatally acquired HIV: differential evolution for males and females. A multiregional analysis from the IeDEA global paediatric collaboration.(2019-Nov) Jesson J; Schomaker M; Malasteste K; Wati DK; Kariminia A; Sylla M; Kouadio K; Sawry S; Mubiana-Mbewe M; Ayaya S; Vreeman R; McGowan CC; Yotebieng M; Leroy V; Davies MA; Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, OH, USA.; Department of Child Health and Paediatrics, School of Medicine, College of Health Sciences, Moi University, Eldoret, Kenya.; Sanglah Hospital, Bali, Indonesia.; Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.; Vanderbilt University School of Medicine, Nashville, TN, USA.; The Kirby Institute, UNSW, Sydney, Australia.; University of Cape Town, Centre for Infectious Disease Epidemiology and Research, Cape Town, South Africa.; Hopital Gabriel Touré, Bamako, Mali.; Harriet Shezi Children's Clinic, Chris Hani Baragwanath Academic Hospital, Soweto, South Africa.; Faculty of Health Scences, Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Johannesburg, South Africa.; CIRBA, Abidjan, Côte d'Ivoire.; Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.; Inserm U1219, Bordeaux Population Health Center, Université de Bordeaux, Bordeaux, France.; Medical Informatics and Technology, Institute of Public Health, UMIT - University for Health Sciences, Medical Decision Making and Health Technology Assessment, Hall in Tirol, Austria.; Inserm U1027, Université Paul Sabatier Toulouse 3, Toulouse, France.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)INTRODUCTION: Stunting is a key issue for adolescents with perinatally acquired HIV (APH) that needs to be better understood. As part of the IeDEA multiregional consortium, we described growth evolution during adolescence for APH on antiretroviral therapy (ART). METHODS: We included data from sub-Saharan Africa, the Asia-Pacific, and the Caribbean, Central and South America regions collected between 2003 and 2016. Adolescents on ART, reporting perinatally acquired infection or entering HIV care before 10 years of age, with at least one height measurement between 10 and 16 years of age, and followed in care until at least 14 years of age were included. Characteristics at ART initiation and at 10 years of age were compared by sex. Correlates of growth defined by height-for-age z-scores (HAZ) between ages 10 and 19 years were studied separately for males and females, using linear mixed models. RESULTS: Overall, 8737 APH were included, with 46% from Southern Africa. Median age at ART initiation was 8.1 years (interquartile range (IQR) 6.1 to 9.6), 50% were females, and 41% were stunted (HAZ<-2 SD) at ART initiation. Males and females did not differ by age and stunting at ART initiation, CD4 count over time or retention in care. At 10 years of age, 34% of males were stunted versus 39% of females (p < 0.001). Females had better subsequent growth, resulting in a higher prevalence of stunting for males compared to females by age 15 (48% vs. 25%) and 18 years (31% vs. 15%). In linear mixed models, older age at ART initiation and low CD4 count were associated with poor growth over time (p < 0.001). Those stunted at 10 years of age or at ART initiation had the greatest growth improvement during adolescence. CONCLUSIONS: Prevalence of stunting is high among APH worldwide. Substantial sex-based differences in growth evolution during adolescence were observed in this global cohort, which were not explained by differences in age of access to HIV care, degree of immunosuppression or region. Other factors influencing growth differences in APH, such as differences in pubertal development, should be better documented, to guide further research and inform interventions to optimize growth and health outcomes among APH.Item The epidemiology of adolescents living with perinatally acquired HIV: A cross-region global cohort analysis.(2018-Mar) Slogrove AL; Schomaker M; Davies MA; Williams P; Balkan S; Ben-Farhat J; Calles N; Chokephaibulkit K; Duff C; Eboua TF; Kekitiinwa-Rukyalekere A; Maxwell N; Pinto J; Seage G; Teasdale CA; Wanless S; Warszawski J; Wools-Kaloustian K; Yotebieng M; Timmerman V; Collins IJ; Goodall R; Smith C; Patel K; Paul M; Gibb D; Vreeman R; Abrams EJ; Hazra R; Van Dyke R; Bekker LG; Mofenson L; Vicari M; Essajee S; Penazzato M; Anabwani G; Q Mohapi E; N Kazembe P; Hlatshwayo M; Lumumba M; Goetghebuer T; Thorne C; Galli L; van Rossum A; Giaquinto C; Marczynska M; Marques L; Prata F; Ene L; Okhonskaia L; Rojo P; Fortuny C; Naver L; Rudin C; Le Coeur S; Volokha A; Rouzier V; Succi R; Sohn A; Kariminia A; Edmonds A; Lelo P; Ayaya S; Ongwen P; Jefferys LF; Phiri S; Mubiana-Mbewe M; Sawry S; Renner L; Sylla M; Abzug MJ; Levin M; Oleske J; Chernoff M; Traite S; Purswani M; Chadwick EG; Judd A; Leroy V; Bronx-Lebanon Hospital Center (Icahn School of Medicine at Mount Sinai), Bronx, New York, United States of America.; National Institute of Child Health and Human Development (NICHD), US National Institutes of Health, Rockville, Maryland, United States of America.; Institute of Child Health, University College London, London, United Kingdom.; UNICEF, New York, New York, United States of America.; Inserm (French Institute of Health and Medical Research), CESP UMR Villejuif, France.; School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil.; University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, United States of America.; ICAP at Columbia University Mailman School of Public Health, New York, New York, United States of America.; Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America.; CHU Gabriel Touré, Bamako, Mali.; Elizabeth Glaser Pediatric AIDS Foundation, Washington, DC, United States of America.; Feinberg School of Medicine, Northwestern University, Evanston, Illinois, United States of America.; University Children's Hospital, Basel, Switzerland.; MRC Clinical Trials Unit at University College London, London, United Kingdom.; Centro Hospitalar do Porto, Porto, Portugal.; Republican Hospital of Infectious Diseases, St Petersburg, Russian Federation.; Rutgers New Jersey Medical School, Newark, New Jersey, United States of America.; Tulane University, New Orleans, Louisiana, United States of America.; Medical University of Warsaw, Hospital of Infectious Diseases in Warsaw, Warsaw, Poland.; Karolinska University Hospital, Stockholm, Sweden.; Yopougon University Hospital, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire.; Baylor International Pediatric AIDS Initiative, Kampala, Uganda.; Epicentre, Médecins Sans Frontières, Paris, France.; Indiana University School of Medicine, Indianapolis, Indiana, United States of America.; Center for Infectious Diseases Epidemiology and Research, University of Cape Town, Cape Town, South Africa.; College of Public Health, Ohio State University, Columbus, Ohio, United States of America.; Department of Health Sciences, University of Florence, Florence, Italy.; Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.; Lighthouse Trust Clinic, Lilongwe, Malawi.; World Health Organization, Geneva, Switzerland.; Inserm (French Institute of Health and Medical Research), UMR 1027 Université Toulouse 3, Toulouse, France.; Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.; Shupyk National Medical Academy of Postgraduate Education, Kiev, Ukraine.; TREAT Asia/amfAR, Bangkok, Thailand.; Baylor International Pediatric AIDS Initiative, Mbeya, Tanzania.; Hospital Doce de Octubre, Madrid, Spain.; Hospital de Santa Maria/CHLN, Lisbon, Portugal.; Baylor International Pediatric AIDS Initiative, Lilongwe, Malawi.; Baylor International Pediatric AIDS Initiative, Texas Children's Hospital-USA, Houston, Texas, United States of America.; Baylor International Pediatric AIDS Initiative, Mbabane, Swaziland.; Universidade Federal de São Paulo, São Paulo, Brazil.; Pediatric Hospital Kalembe Lembe, Lingwala, Kinshasa, Democratic Republic of Congo.; Family AIDS Care and Education Services, Kenya Medical Research Institute, Kisumu, Kenya.; Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya.; International AIDS Society, Geneva, Switzerland.; Baylor International Pediatric AIDS Initiative, Maseru, Lesotho.; PENTA Foundation, Padova, Italy.; Center for Infectious Disease Research in Zambia, Lusaka, Zambia.; Hospital St Pierre Cohort, Bruxelles, Belgium.; Erasmus MC University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands.; Institut National d'Etudes Démograhiques (Ined), F-75020 Paris, France.; Institut de Recherche pour le Développement (IRD) 174/PHPT, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.; Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain.; SolidarMed Lesotho, Mozambique and Zimbabwe, Lucerne, Switzerland.; Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.; Harriet Shezi Children's Clinic, Chris Hani Baragwanath Hospital, Johannesburg, South Africa.; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa.; GHESKIO Center, Port-au-Prince, Haiti.; Kirby Institute, UNSW, Sydney, Australia.; Victor Babes Hospital, Bucharest, Romania.; Baylor International Pediatric AIDS Initiative, Gaborone, Botswana.; University of Ghana School of Medicine and Dentistry, Accra, Ghana.; CIDRZ; Centre for Infectious Disease Research in Zambia (CIDRZ)BACKGROUND: Globally, the population of adolescents living with perinatally acquired HIV (APHs) continues to expand. In this study, we pooled data from observational pediatric HIV cohorts and cohort networks, allowing comparisons of adolescents with perinatally acquired HIV in "real-life" settings across multiple regions. We describe the geographic and temporal characteristics and mortality outcomes of APHs across multiple regions, including South America and the Caribbean, North America, Europe, sub-Saharan Africa, and South and Southeast Asia. METHODS AND FINDINGS: Through the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER), individual retrospective longitudinal data from 12 cohort networks were pooled. All children infected with HIV who entered care before age 10 years, were not known to have horizontally acquired HIV, and were followed up beyond age 10 years were included in this analysis conducted from May 2016 to January 2017. Our primary analysis describes patient and treatment characteristics of APHs at key time points, including first HIV-associated clinic visit, antiretroviral therapy (ART) start, age 10 years, and last visit, and compares these characteristics by geographic region, country income group (CIG), and birth period. Our secondary analysis describes mortality, transfer out, and lost to follow-up (LTFU) as outcomes at age 15 years, using competing risk analysis. Among the 38,187 APHs included, 51% were female, 79% were from sub-Saharan Africa and 65% lived in low-income countries. APHs from 51 countries were included (Europe: 14 countries and 3,054 APHs; North America: 1 country and 1,032 APHs; South America and the Caribbean: 4 countries and 903 APHs; South and Southeast Asia: 7 countries and 2,902 APHs; sub-Saharan Africa, 25 countries and 30,296 APHs). Observation started as early as 1982 in Europe and 1996 in sub-Saharan Africa, and continued until at least 2014 in all regions. The median (interquartile range [IQR]) duration of adolescent follow-up was 3.1 (1.5-5.2) years for the total cohort and 6.4 (3.6-8.0) years in Europe, 3.7 (2.0-5.4) years in North America, 2.5 (1.2-4.4) years in South and Southeast Asia, 5.0 (2.7-7.5) years in South America and the Caribbean, and 2.1 (0.9-3.8) years in sub-Saharan Africa. Median (IQR) age at first visit differed substantially by region, ranging from 0.7 (0.3-2.1) years in North America to 7.1 (5.3-8.6) years in sub-Saharan Africa. The median age at ART start varied from 0.9 (0.4-2.6) years in North America to 7.9 (6.0-9.3) years in sub-Saharan Africa. The cumulative incidence estimates (95% confidence interval [CI]) at age 15 years for mortality, transfers out, and LTFU for all APHs were 2.6% (2.4%-2.8%), 15.6% (15.1%-16.0%), and 11.3% (10.9%-11.8%), respectively. Mortality was lowest in Europe (0.8% [0.5%-1.1%]) and highest in South America and the Caribbean (4.4% [3.1%-6.1%]). However, LTFU was lowest in South America and the Caribbean (4.8% [3.4%-6.7%]) and highest in sub-Saharan Africa (13.2% [12.6%-13.7%]). Study limitations include the high LTFU rate in sub-Saharan Africa, which could have affected the comparison of mortality across regions; inclusion of data only for APHs receiving ART from some countries; and unavailability of data from high-burden countries such as Nigeria. CONCLUSION: To our knowledge, our study represents the largest multiregional epidemiological analysis of APHs. Despite probable under-ascertained mortality, mortality in APHs remains substantially higher in sub-Saharan Africa, South and Southeast Asia, and South America and the Caribbean than in Europe. Collaborations such as CIPHER enable us to monitor current global temporal trends in outcomes over time to inform appropriate policy responses.